检验医学 ›› 2015, Vol. 30 ›› Issue (5): 478-483.DOI: 10.3969/j.issn.1673-8640.2015.05.017
周悦昌1, 任丽娜1, 王旭辉1, 陈建文3, 陈妙佩3, 毛鸿忠3, 韩立杰2
收稿日期:
2014-10-31
出版日期:
2015-05-30
发布日期:
2015-06-17
作者简介:
null作者简介:周悦昌,男,1978年生,硕士,副主任技师,主要从事临床检验工作。
ZHOU Yuechang1, REN Lina1, WANG Xuhui1, CHEN Jianwen3, CHEN Miaopei3, MAO Hongzhong3, HAN Lijie2
Received:
2014-10-31
Online:
2015-05-30
Published:
2015-06-17
摘要:
中图分类号:
周悦昌, 任丽娜, 王旭辉, 陈建文, 陈妙佩, 毛鸿忠, 韩立杰. 不同培养条件下透析液和反渗水微生物监测的比较分析[J]. 检验医学, 2015, 30(5): 478-483.
ZHOU Yuechang, REN Lina, WANG Xuhui, CHEN Jianwen, CHEN Miaopei, MAO Hongzhong, HAN Lijie. Comparison analysis of microbiological monitoring between hemodialysate and reverse osmosis water under different media[J]. Laboratory Medicine, 2015, 30(5): 478-483.
细菌 | 培养基 | 观察时间 (h) | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | ||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
金黄色葡萄球菌 | EMB | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 | 2 | 18 | 0 | 2 | 19 | 0 | |
72 | 3 | 18 | 0 | 2 | 20 | 0 | ||
TGEA | 48 | 4 | 29 | 0 | 4 | 23 | 0 | |
72 | 4 | 29 | 0 | 5 | 24 | 0 | ||
大肠埃希菌 | EMB | 48 | 3 | 24 | 0 | 2 | 18 | 0 |
72 | 3 | 25 | 0 | 2 | 20 | 0 | ||
TSA | 48 | 2 | 23 | 0 | 2 | 16 | 0 | |
72 | 3 | 23 | 1 | 2 | 16 | 0 | ||
TGEA | 48 | 5 | 32 | 0 | 5 | 29 | 0 | |
72 | 6 | 36 | 0 | 5 | 29 | 0 | ||
铜绿假单胞菌 | EMB | 48 | 4 | 17 | 0 | 1 | 16 | 0 |
72 | 4 | 19 | 0 | 1 | 19 | 0 | ||
TSA | 48 | 2 | 19 | 0 | 2 | 21 | 0 | |
72 | 3 | 22 | 0 | 3 | 23 | 0 | ||
TGEA | 48 | 6 | 31 | 0 | 4 | 32 | 0 | |
72 | 6 | 33 | 0 | 5 | 35 | 0 |
表1 模拟污染透析液及模拟污染反渗水在各培养基中35℃培养48、72 h的菌落生长情况
细菌 | 培养基 | 观察时间 (h) | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | ||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
金黄色葡萄球菌 | EMB | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 | 2 | 18 | 0 | 2 | 19 | 0 | |
72 | 3 | 18 | 0 | 2 | 20 | 0 | ||
TGEA | 48 | 4 | 29 | 0 | 4 | 23 | 0 | |
72 | 4 | 29 | 0 | 5 | 24 | 0 | ||
大肠埃希菌 | EMB | 48 | 3 | 24 | 0 | 2 | 18 | 0 |
72 | 3 | 25 | 0 | 2 | 20 | 0 | ||
TSA | 48 | 2 | 23 | 0 | 2 | 16 | 0 | |
72 | 3 | 23 | 1 | 2 | 16 | 0 | ||
TGEA | 48 | 5 | 32 | 0 | 5 | 29 | 0 | |
72 | 6 | 36 | 0 | 5 | 29 | 0 | ||
铜绿假单胞菌 | EMB | 48 | 4 | 17 | 0 | 1 | 16 | 0 |
72 | 4 | 19 | 0 | 1 | 19 | 0 | ||
TSA | 48 | 2 | 19 | 0 | 2 | 21 | 0 | |
72 | 3 | 22 | 0 | 3 | 23 | 0 | ||
TGEA | 48 | 6 | 31 | 0 | 4 | 32 | 0 | |
72 | 6 | 33 | 0 | 5 | 35 | 0 |
细菌 | 培养基 | 观察时间 (h) | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | ||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
金黄色葡萄球菌 | EMB | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 | 2 | 33 | 0 | 6 | 40 | 0 | |
72 | 3 | 35 | 0 | 15 | 48 | 0 | ||
TGEA | 48 | 3 | 22 | 0 | 5 | 66 | 0 | |
72 | 3 | 31 | 0 | 10 | 66 | 0 | ||
大肠埃希菌 | EMB | 48 | 3 | 38 | 0 | 6 | 32 | 0 |
72 | 3 | 38 | 0 | 8 | 33 | 0 | ||
TSA | 48 | 3 | 26 | 0 | 8 | 46 | 0 | |
72 | 3 | 31 | 1 | 14 | 46 | 0 | ||
TGEA | 48 | 4 | 34 | 0 | 11 | 44 | 0 | |
72 | 4 | 35 | 0 | 14 | 44 | 0 | ||
铜绿假单胞菌 | EMB | 48 | 4 | 14 | 0 | 4 | 26 | 0 |
72 | 4 | 22 | 0 | 9 | 27 | 0 | ||
TSA | 48 | 3 | 10 | 0 | 7 | 34 | 0 | |
72 | 3 | 12 | 0 | 10 | 54 | 0 | ||
TGEA | 48 | 4 | 15 | 0 | 9 | 50 | 0 | |
72 | 4 | 24 | 0 | 12 | 61 | 0 |
表2 模拟污染透析液及模拟污染反渗水在25℃各培养基培养48、72 h的菌落生长情况
细菌 | 培养基 | 观察时间 (h) | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | ||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
金黄色葡萄球菌 | EMB | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 | 2 | 33 | 0 | 6 | 40 | 0 | |
72 | 3 | 35 | 0 | 15 | 48 | 0 | ||
TGEA | 48 | 3 | 22 | 0 | 5 | 66 | 0 | |
72 | 3 | 31 | 0 | 10 | 66 | 0 | ||
大肠埃希菌 | EMB | 48 | 3 | 38 | 0 | 6 | 32 | 0 |
72 | 3 | 38 | 0 | 8 | 33 | 0 | ||
TSA | 48 | 3 | 26 | 0 | 8 | 46 | 0 | |
72 | 3 | 31 | 1 | 14 | 46 | 0 | ||
TGEA | 48 | 4 | 34 | 0 | 11 | 44 | 0 | |
72 | 4 | 35 | 0 | 14 | 44 | 0 | ||
铜绿假单胞菌 | EMB | 48 | 4 | 14 | 0 | 4 | 26 | 0 |
72 | 4 | 22 | 0 | 9 | 27 | 0 | ||
TSA | 48 | 3 | 10 | 0 | 7 | 34 | 0 | |
72 | 3 | 12 | 0 | 10 | 54 | 0 | ||
TGEA | 48 | 4 | 15 | 0 | 9 | 50 | 0 | |
72 | 4 | 24 | 0 | 12 | 61 | 0 |
培养基 | 观察 时间 | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | |||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
EMB | 48 h | 0 | 0 | 0 | 0 | 0 | 0 | |
72 h | 0 | 0 | 0 | 0 | 0 | 0 | ||
7 d | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 h | 2 | 12 | 0 | 4 | 19 | 0 | |
72 h | 2 | 12 | 0 | 4 | 20 | 0 | ||
7 d | 2 | 13 | 0 | 4 | 21 | 0 | ||
TGEA | 48 h | 2 | 18 | 0 | 7 | 21 | 0 | |
72 h | 3 | 27 | 0 | 8 | 23 | 0 | ||
7 d | 3 | 27 | 0 | 8 | 25 | 0 |
表3 以金黄色葡萄球菌模拟污染透析液及反渗水在各培养基中25℃培养48、72 h及7 d的菌落生长情况
培养基 | 观察 时间 | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | |||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
EMB | 48 h | 0 | 0 | 0 | 0 | 0 | 0 | |
72 h | 0 | 0 | 0 | 0 | 0 | 0 | ||
7 d | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 h | 2 | 12 | 0 | 4 | 19 | 0 | |
72 h | 2 | 12 | 0 | 4 | 20 | 0 | ||
7 d | 2 | 13 | 0 | 4 | 21 | 0 | ||
TGEA | 48 h | 2 | 18 | 0 | 7 | 21 | 0 | |
72 h | 3 | 27 | 0 | 8 | 23 | 0 | ||
7 d | 3 | 27 | 0 | 8 | 25 | 0 |
培养基 | 观察 时间 | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | |||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
EMB | 48 h | 0 | 0 | 0 | 0 | 0 | 0 | |
72 h | 0 | 0 | 0 | 0 | 0 | 0 | ||
7 d | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 h | 2 | 18 | 0 | 3 | 20 | 0 | |
72 h | 2 | 18 | 0 | 3 | 21 | 0 | ||
7 d | 2 | 20 | 0 | 3 | 23 | 0 | ||
TGEA | 48 h | 4 | 29 | 0 | 3 | 23 | 0 | |
72 h | 4 | 29 | 0 | 4 | 24 | 0 | ||
7 d | 4 | 32 | 0 | 4 | 24 | 0 |
表4 以金黄色葡萄球菌模拟污染透析液及反渗水在各培养基中35℃培养48、72 h及7 d的菌落生长情况
培养基 | 观察 时间 | 模拟污染透析液菌落数 | 空白 | 模拟污染反渗水菌落数 | 空白 | |||
---|---|---|---|---|---|---|---|---|
6 CFU/mL | 60 CFU/mL | 6 CFU/mL | 60 CFU/mL | |||||
EMB | 48 h | 0 | 0 | 0 | 0 | 0 | 0 | |
72 h | 0 | 0 | 0 | 0 | 0 | 0 | ||
7 d | 0 | 0 | 0 | 0 | 0 | 0 | ||
TSA | 48 h | 2 | 18 | 0 | 3 | 20 | 0 | |
72 h | 2 | 18 | 0 | 3 | 21 | 0 | ||
7 d | 2 | 20 | 0 | 3 | 23 | 0 | ||
TGEA | 48 h | 4 | 29 | 0 | 3 | 23 | 0 | |
72 h | 4 | 29 | 0 | 4 | 24 | 0 | ||
7 d | 4 | 32 | 0 | 4 | 24 | 0 |
[1] | CANAU B, BOSC JY, LERAY H, et al.Microbiological purity of dialysate for on-line substitution fluid preparation[J]. Nephrol Dial Transplant, 2000, 15(Suppl 2):21-30. |
[2] | TATTERSALL JE,WARD RA, EUDIAL Group.Online haemodiafiltration:definition, dose quantification and safety revisited[J]. Nephrol Dial Transplant,2013,28(3): 542-550. |
[3] | 魏媛媛, 马迎春. 透析用水及透析液的微生物检测[J]. 中国血液净化,2014,13(4):335-339. |
[4] | WARD DM. Hemodialysis water: an update on safety issues, monitoring,adverse clinical events[J]. ASAIO J,2004,50(6): Ⅹⅲ-Ⅹⅷ. |
[5] | 林明滢,王复德,王永卫.不同培养基测定菌落总数的比较[J].感控杂志,2001,11(5):289-298. |
[6] | REASONER DJ.Heterotrophic plate count methodology in the United States[J]. Int J Food Microbiol,2004,92(3):307-315. |
[7] | NYSTRAND R.Microbiology of water and fluids for hemodialysis[J]. J Chin Med Assoc,2008,71(5):223-229. |
[8] | PONTORIERO G, POZZONI P, ANDRULLI S, et al. The quality of dialysis water[J]. Nephrol Dial Transplant,2003,18(Suppl 7): ⅶ21-ⅶ25. |
[9] | SMEETS E, KOOMAN J, VAN DER SANDE F, et al. Prevention of biofilm formation in dialysis water treatment systems[J]. Kidney Int,2003,63(4):1574-1576. |
[10] | RAY J.Microbiological monitoring of dialysis water systems-which culture method[J]. J Ren Care,2007,33(2):66-69. |
[11] | JAMES R.Monitoring of dialysis water systems-is there a need for increased sampling[J]. EDTNA ERCA J,2006,32(2):74-77. |
[12] | NYSTRAND R.The microbial world and fluids in dialysis[J]. Biomed Instrum Technol,2008,42(2):150-159. |
[13] | JACKSON RW, OSBORNE K, BARNES G,et al.Multiregional evaluation of the SimPlate heterotrophic plate count method compared to the standard plate count agar pour plate method in water[J]. Appl Environ Microbiol,2000,66(1):453-454. |
[14] | 叶纯宜,林明滢,陈小妮,等.紫外线杀菌效能探讨[J].感控杂志,2005,15(5):293-300. |
[15] | ROTH VR, JARVIS WR.Outbreaks of infection and/or pyrogenic reactions in dialysis patients[J]. Semin Dial,2000,13(2):92-96. |
[16] | LEDEBO I, BLANKESTIJN PJ.Haemodiafiltration-optimal efficiency and safety[J]. NDT Plus,2010,3(1):8-16. |
[17] | ASCI G, TZ H, OZKAHYA M, et al.The impact of membrane permeability and dialysate purity on cardiovascular outcomes[J]. J Am Soc Nephrol,2013,24(6):1014-1023. |
[18] | NYSTRAND R.Official recommendations for quality of fluids in dialysis-the need for standardisation[J]. J Ren Care,2009,35(2): 74-81. |
[19] | AMATO RL.Water treatment for hemodialysis--updated to include the latest AAMI standards for dialysate(RD52: 2004) continuing[J]. Nephrol Nurs J, 2005,32(2):151-167. |
[20] | LAYMAN-AMATO R, CURTIS J, PAYNE GM.Water treatment for hemodialysis: an update[J]. Nephrol Nurs J,2013,40(5):383-404. |
[21] | FENDLEY DA, WARD RA.Dialysate quality: new standards require a new approach to compliance[J]. Semin Dial,2012,25(5):510-515. |
[22] | KAWASAKI T, UCHINO J, SHINODA T, et al.Guidance of technical management of dialysis water and dialysis fluid for the Japan Association for Clinical Engineering Technologists[J]. Blood Purif,2009,27(Suppl 1):41-49. |
[23] | KAWANISHI H, MASAKANE I, TOMO T.The new standard of fluids for hemodialysis in Japan[J]. Blood Purif,2009,27(Suppl 1):5-10. |
[24] | KAWANISHI H, AKIBA T, MASAKANE I, et al.Standard on microbiological management of fluids for hemodialysis and related therapies by the Japanese Society for Dialysis Therapy 2008[J].Ther Apher Dial,2009,13(2):161-166. |
[25] | WARD RA.New AAMI standards for dialysis fluids[J]. Nephrol News Issues,2011,25(13):33-36. |
[1] | 邓晨霞, 梅燕萍, 张霞, 黄宝山, 添丹, 曹梦婷, 胡永奇, 林勇平, 田礼军. 光学法血小板计数对采血后可逆性血小板聚集的解聚效果[J]. 检验医学, 2023, 38(11): 1087-1090. |
[2] | 陆庭嫣, 顾丹凤, 王亚虹, 葛亚芳, 杨海鸥. 阴道分泌物常规检测模式性能评价和复检规则分析[J]. 检验医学, 2023, 38(11): 1091-1097. |
[3] | 徐黎明, 王瑾, 袁梦娇, 王金金. 患者数据指数加权移动平均法在区域检验中心MCV、MCH、MCHC项目稳定性和可比性监测中的应用[J]. 检验医学, 2023, 38(11): 1098-1100. |
[4] | 刘伟, 郭战萍, 郝迎军, 宋媛媛. 胶质硅法和鞣花酸法APTT检测临床应用效果比较[J]. 检验医学, 2023, 38(10): 983-986. |
[5] | 卫明珠, 潘继文, 罗锐, 陈俊辉. 凝血4项和肿瘤标志物对乙型肝炎相关肝癌的辅助诊断价值[J]. 检验医学, 2023, 38(9): 901-904. |
[6] | 徐刚强, 晏利红. 冷凝集致单纯假性血小板减少1例报道并文献复习[J]. 检验医学, 2023, 38(9): 905-908. |
[7] | 程序, 杨忖卿, 庞博, 谷春, 侯雪筠, 费佳欣, 吴敏, 李军, 刘贵建. 肥胖人群外周血嗜酸性粒细胞数量和活性表达[J]. 检验医学, 2023, 38(9): 855-859. |
[8] | 雷静, 满秋红, 赵仁嘉, 张铁军, 蒋艳峰, 徐珂琳, 索晨, 陈兴栋. 红细胞分布宽度升高增加心力衰竭的发病风险——基于英国生物样本库的队列研究[J]. 检验医学, 2023, 38(9): 860-864. |
[9] | 段丽丽, 蒋唱, 周冬梅. PLR在抗核抗体阳性强直性脊柱炎患者中的临床价值[J]. 检验医学, 2023, 38(7): 669-674. |
[10] | 夏艳艳, 夏永泉, 宋广浩, 夏茂. 凝血相关指标在老年静脉血栓栓塞患者利伐沙班抗凝治疗监测中的价值[J]. 检验医学, 2023, 38(5): 475-478. |
[11] | 陈艺, 王稼, 徐志伟, 翟亚萍, 轩伟霞. 不同抗凝剂对体外中性粒细胞吞噬、活化和凋亡功能的影响[J]. 检验医学, 2023, 38(5): 479-483. |
[12] | 杨丽媛, 戴碗琴, 汪小桐, 娄晓丽, 王玥, 侯彦强. 外周血中性粒细胞对γ干扰素释放试验结果的影响[J]. 检验医学, 2023, 38(5): 484-488. |
[13] | 吕小林. 血细胞分析仪误识脱颗粒嗜酸性粒细胞1例分析[J]. 检验医学, 2023, 38(5): 502-504. |
[14] | 张辉, 费阳, 张驰, 陈俊昆, 李果. 武汉地区0~3 d新生儿网织血小板参数参考区间[J]. 检验医学, 2023, 38(1): 69-72. |
[15] | 谢媛, 易婉婉, 史秋园, 吕中伟, 刘瑾. 血栓弹力图和常规凝血试验评估结肠癌和结肠息肉患者凝血状态的临床价值[J]. 检验医学, 2022, 37(11): 1007-1011. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||