Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (12): 1141-1146.DOI: 10.3969/j.issn.1673-8640.2023.12.006
Previous Articles Next Articles
XIANG Jin, LIU Aiping, HU Yao, WU Zhiyuan, CAO Guojun, GUAN Ming()
Received:
2022-10-25
Revised:
2023-04-26
Online:
2023-12-30
Published:
2024-02-20
CLC Number:
XIANG Jin, LIU Aiping, HU Yao, WU Zhiyuan, CAO Guojun, GUAN Ming. ANA profiles in COVID-19 patients and influence of serum heat-inactivation on ANA determination[J]. Laboratory Medicine, 2023, 38(12): 1141-1146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.12.006
组别 | 例数 | 性别 | 年龄/岁 | ORF1ab基因Ct值 | N基因Ct值 | NCT/d | |
---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||
ANA阳性组 | 24 | 13 | 11 | 75(33~90) | 33.55±5.62 | 31.52±6.04 | 16(3~46) |
ANA阴性组 | 25 | 10 | 15 | 67(26~88) | 34.61±6.70 | 32.56±7.50 | 15(1~39) |
统计值 | 0.987 | -2.142 | -0.597 | -0.533 | -0.200 | ||
P值 | 0.321 | 0.032 | 0.258 | 0.326 | 0.841 |
组别 | 例数 | 性别 | 年龄/岁 | ORF1ab基因Ct值 | N基因Ct值 | NCT/d | |
---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||
ANA阳性组 | 24 | 13 | 11 | 75(33~90) | 33.55±5.62 | 31.52±6.04 | 16(3~46) |
ANA阴性组 | 25 | 10 | 15 | 67(26~88) | 34.61±6.70 | 32.56±7.50 | 15(1~39) |
统计值 | 0.987 | -2.142 | -0.597 | -0.533 | -0.200 | ||
P值 | 0.321 | 0.032 | 0.258 | 0.326 | 0.841 |
组别 | 例数 | 性别 | 年龄/岁 | ORF1ab基因 Ct值 | N 基因Ct 值 | NCT/d | ANA阳性/ [例(%)] | |
---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||
合并AID组 | 9 | 2 | 7 | 56(33~83) | 32.16±6.96 | 29.77±7.31 | 18(5~39) | 5(55.6) |
合并非AID组 | 31 | 18 | 13 | 71(26~90) | 33.30±6.22 | 31.40±7.05 | 16(1~35) | 15(48.4) |
无基础疾病组 | 9 | 3 | 6 | 76(29~88) | 38.76±1.53 | 36.58±2.36 | 12(3~46) | 4(44.4) |
统计值 | 4.417 | 6.952 | 7.501 | 5.889 | 1.879 | 0.234 | ||
P值 | 0.115 | 0.031 | 0.024 | 0.053 | 0.391 | 0.890 |
组别 | 例数 | 性别 | 年龄/岁 | ORF1ab基因 Ct值 | N 基因Ct 值 | NCT/d | ANA阳性/ [例(%)] | |
---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||
合并AID组 | 9 | 2 | 7 | 56(33~83) | 32.16±6.96 | 29.77±7.31 | 18(5~39) | 5(55.6) |
合并非AID组 | 31 | 18 | 13 | 71(26~90) | 33.30±6.22 | 31.40±7.05 | 16(1~35) | 15(48.4) |
无基础疾病组 | 9 | 3 | 6 | 76(29~88) | 38.76±1.53 | 36.58±2.36 | 12(3~46) | 4(44.4) |
统计值 | 4.417 | 6.952 | 7.501 | 5.889 | 1.879 | 0.234 | ||
P值 | 0.115 | 0.031 | 0.024 | 0.053 | 0.391 | 0.890 |
[1] |
PEKER B O, ENER A G, KAPTAN AYDOMU F. Antinuclear antibodies(ANAs)detected by indirect immunofluorescence(IIF)method in acute COVID-19 infection;future roadmap for laboratory diagnosis[J]. J Immunol Methods, 2021, 499:113174.
DOI URL |
[2] | SAAD M A, ALFISHAWY M, NASSAR M, et al. COVID-19 and autoimmune diseases:a systematic review of reported cases[J]. Curr Rheumatol Rev, 2021, 17(2):193-204. |
[3] |
MERONI P L, SCHUR P H. ANA screening:an old test with new recommendations[J]. Ann Rheum Dis, 2010, 69(8):1420-1422.
DOI URL |
[4] | 刘洁, 赵剑虹, 高艳, 等. 加温灭活对SARS-CoV-2咽拭子样本核酸检测结果的影响[J]. 检验医学, 2020, 35(5):405-408. |
[5] | 中华人民共和国国家卫生健康委员会办公厅, 中华人民共和国国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022, 17(4):481-487. |
[6] |
DAMOISEAUX J, ANDRADE L E C, CARBALLO O G, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns:the International Consensus on ANA patterns(ICAP) perspective[J]. Ann Rheum Dis, 2019, 78(7):879-889.
DOI URL |
[7] |
CHAN E K L, VON MÜLLEN C A, FRITZLER M J, et al. The International Consensus on ANA Patterns(ICAP) in 2021-the 6th workshop and current perspectives[J]. J Appl Lab Med, 2022, 7(1):322-330.
DOI URL |
[8] |
VOJDANI A, KHARRAZIAN D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases[J]. Clin Immunol, 2020, 217:108480.
DOI URL |
[9] |
SALLE V. Coronavirus-induced autoimmunity[J]. Clin Immunol, 2021, 226:108694.
DOI URL |
[10] |
KANDUC D, SHOENFELD Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes:implications for the vaccine[J]. Immunol Res, 2020, 68(5):310-313.
DOI |
[11] | ZUO Y, ESTES S K, ALI R A, et al. Prothrombotic antiphospholipid antibodies in COVID-19[J]. medRxiv, 2020, 2020:20131607. |
[12] | TAN C W, LOW J G H, WONG W H, et al. Critically ill COVID-19 infected patients exhibit increased clot waveform analysis parameters consistent with hypercoagulability[J]. Am J Hematol, 2020, 95(7):E156-E158. |
[13] | BASTARD P, ROSEN LB, ZHANG Q, et al. Autoantibodies against type Ⅰ IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370(6515):eabd4585. |
[14] |
MULLER S, RADIC M. Oxidation and mitochondrial origin of NET DNA in the pathogenesis of lupus[J]. Nat Med, 2016, 22(2):126-127.
DOI PMID |
[15] |
APEL F, ZYCHLINSKY A, KENNY E F. The role of neutrophil extracellular traps in rheumatic diseases[J]. Nat Rev Rheumatol, 2018, 14(8):467-475.
DOI PMID |
[16] |
WIGERBLAD G, KAPLAN M J. NETs spread ever wider in rheumatic diseases[J]. Nat Rev Rheumatol, 2020, 16(2):73-74.
DOI PMID |
[17] |
ALI R A, GANDHI A A, MENG H, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome[J]. Nat Commun, 2019, 10(1):1916.
DOI PMID |
[18] |
NARASARAJU T, TANG B M, HERRMANN M, et al. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19[J]. Front Pharmacol, 2020, 11:870.
DOI PMID |
[19] |
TOMAR B, ANDERS H J, DESAI J, et al. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19[J]. Cells, 2020, 9(6):1383.
DOI URL |
[20] | BARNES B J, ADROVER J M, BAXTER-STOLTZFUS A, et al. Targeting potential drivers of COVID-19:neutrophil extracellular traps[J]. J Exp Med, 2020, 217(6):e20200652. |
[21] | PASCOLINI S, VANNINI A, DELEONARDI G, et al. COVID-19 and immunological dysregulation:can autoantibodies be useful?[J]. ClinTransl Sci, 2021, 14(2):502-508. |
[22] |
GAZZARUSO C, CARLO STELLA N, MARIANI G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia[J]. Clin Rheumatol, 2020, 39(7):2095-2097.
DOI PMID |
[23] |
LERMA L A, CHAUDHARY A, BRYAN A, et al. Prevalence of autoantibody responses in acute coronavirus disease 2019(COVID-19)[J]. J Transl Autoimmun, 2020, 3:100073.
DOI URL |
[24] | SACCHI M C, TAMIAZZO S, STOBBIONE P, et al. SARS-CoV-2 infection as a trigger of autoimmune response[J]. ClinTransl Sci, 2021, 14(3):898-907. |
[25] |
CHANG S E, FENG A, MENG W, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19[J]. Nat Commun, 2021, 12(1):5417.
DOI PMID |
[26] |
TRAHTEMBERG U, FRITZLER M J. On behalf of the COVID-19 chapter of the “Longitudinal Biomarkers in Lung Injury” study group. COVID-19-associated autoimmunity as a feature of acute respiratory failure[J]. Intensive Care Med, 2021, 47(7):801-804.
DOI |
[27] |
CHANG S H, MINN D, KIM Y K. Autoantibodies in moderate and critical cases of COVID-19[J]. Clin Transl Sci, 2021, 14(5):1625-1626.
DOI PMID |
[28] |
KAMPF G, VOSS A, SCHEITHAUER S. Inactivation of coronaviruses by heat[J]. J Hosp Infect, 2020, 105(2):348-349.
DOI PMID |
[1] | GAO Limei, GAO Xiupan, ZENG Junxiang, YU Youyou, PAN Xiujun. Determination results of serum ANA and relation with disease in 7 803 children [J]. Laboratory Medicine, 2024, 39(6): 517-523. |
[2] | HU Chuanxi, LIU Lingyan, LI Man. Clinical roles of indirect immunofluorescence assay,line immunoassay,chemiluminescent assay for determining antinuclear antibodies singly and in combination [J]. Laboratory Medicine, 2024, 39(11): 1072-1077. |
[3] | DUAN Lili, JIANG Chang, ZHOU Dongmei. Role of PLR in ankylosing spondylitis patients with positive antinuclear antibody [J]. Laboratory Medicine, 2023, 38(7): 669-674. |
[4] | YANG Xiao, LI Enling, WU Lixia, DAI Yingxin, WANG Zhiqing, HUANG Hao, ZHENG Bing. Influence of cytoplasmic antinuclear antibody on indirect immunofluorescence assay based antineutrophil cytoplasmic antibody determination [J]. Laboratory Medicine, 2023, 38(12): 1135-1140. |
[5] | YUE Caidie, LI Junyan, DING Aijun, XIE Li, ZENG Weikun. Research progress of rapid determination methods for SARS-CoV-2 antigen [J]. Laboratory Medicine, 2023, 38(1): 87-93. |
[6] | SUN Jiaqi, JIN Weifeng, LI Ping, CHEN Shuzi, LIN Ping, LI Dan, CHEN Qing, WANG Mengxia, ZHU Yuxin. Influence of heat inactivation of blood samples at 56 ℃ for 30 min on psychiatric drug concentration monitoring [J]. Laboratory Medicine, 2022, 37(12): 1174-1177. |
[7] | HUANG Fei, ZHANG Chunyan, GUO Wei, PAN Baishen, WANG Beili. Status and problems of SARS-CoV-2 nucleic acid detection [J]. Laboratory Medicine, 2021, 36(5): 554-559. |
[8] | HU Senan, TAN Junfeng, PENG Chang, AI Honghong, LI Dan. Role of blood glucose variability in the prognosis of severe corona virus disease 2019 patients [J]. Laboratory Medicine, 2021, 36(4): 400-403. |
[9] | WANG Bin. Correlation between neutrophil-to-lymphocyte ratio and short-term poor prognosis in patients with corona virus disease 2019 [J]. Laboratory Medicine, 2021, 36(3): 275-280. |
[10] | ZHU Chuanxin, ZHOU Yuping, HE Yan, ZHOU Qin. Diagnostic role of NLR,CRP,PCT,DD and NT-proBNP in severe corona virus disease 2019 [J]. Laboratory Medicine, 2021, 36(2): 190-193. |
[11] | LI Shichao, SHEN Liang, WANG Chunhua, TONG Yanfei, ZHANG Ji. Diagnostic value of SARS-CoV-2 antibody to COVID-19:a meta-analysis [J]. Laboratory Medicine, 2021, 36(1): 39-43. |
[12] | FAN Jian, GUO Ying, QI Weiqiang, HAO Menglu, ZHANG Tengfei, ZHU Zhaoqin. Analysis on the absolute value of lymphocyte in COVID-19 patients before and after recovery in Shanghai [J]. Laboratory Medicine, 2021, 36(1): 44-47. |
[13] | LIAO Shengjun, XU Xianqun, ZHAO Jin, LI Siwei, QIU Xueping, CHEN Liangjun, LI Yirong. Correlation between some laboratory indexes and severity of COVID-19 in 144 patients [J]. Laboratory Medicine, 2021, 36(1): 48-52. |
[14] | ZHU Chuanxin, ZHOU Yuping, ZHOU Qin, ZHOU Guifeng. Early diagnosis value of NLR,PCT and CRP combined determination for COVID-19 [J]. Laboratory Medicine, 2021, 36(1): 53-56. |
[15] | WANG Xiaowu, GAO Yong, WU Dong. Prediction of severe corona virus disease 2019 by coagulation indicators [J]. Laboratory Medicine, 2021, 36(1): 57-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||