Laboratory Medicine ›› 2022, Vol. 37 ›› Issue (4): 342-348.DOI: 10.3969/j.issn.1673-8640.2022.04.008
Previous Articles Next Articles
YE Jingwen1, SHEN Yunyue2, LIU Yiwen1, HE Yiqing1, DU Yan1, ZHANG Guoliang1, GAO Feng2, YANG Cuixia2()
Received:
2022-01-09
Revised:
2022-03-04
Online:
2022-04-30
Published:
2022-06-07
Contact:
YANG Cuixia
CLC Number:
YE Jingwen, SHEN Yunyue, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GAO Feng, YANG Cuixia. Role of MAPK/ERK signaling pathway in reversing endocrine resistance of breast cancer[J]. Laboratory Medicine, 2022, 37(4): 342-348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2022.04.008
基因 名称 | 序列(5'~3') | 产物长度/bp |
---|---|---|
SRC-1 | F:ATCGGAGATCCTGCCAGCTTCA | 75 |
R:ATCGCCTGTTCCTGGTTGTCCA | ||
ETS-2 | F:GTGGGTGACATTCTCTGGGAACATC | 142 |
R:TGAGGAACGGAGGTGAGGTGTG | ||
c-JUN | F:CCTTGAAAGCTCAGAACTCGGAG | 172 |
R:TGCTGCGTTAGCATGAGTTGGC | ||
GAPDH | F:GTCTCCTCTGACTTCAACAGCG | 95 |
R:ACCACCCTGTTGCTGTAGCCAA |
基因 名称 | 序列(5'~3') | 产物长度/bp |
---|---|---|
SRC-1 | F:ATCGGAGATCCTGCCAGCTTCA | 75 |
R:ATCGCCTGTTCCTGGTTGTCCA | ||
ETS-2 | F:GTGGGTGACATTCTCTGGGAACATC | 142 |
R:TGAGGAACGGAGGTGAGGTGTG | ||
c-JUN | F:CCTTGAAAGCTCAGAACTCGGAG | 172 |
R:TGCTGCGTTAGCATGAGTTGGC | ||
GAPDH | F:GTCTCCTCTGACTTCAACAGCG | 95 |
R:ACCACCCTGTTGCTGTAGCCAA |
组别 | S期 | G2期 | |||
---|---|---|---|---|---|
MCF7/TAMR细胞 | T47D/TAMR细胞 | MCF7/TAMR细胞 | T47D/TAMR细胞 | ||
对照组 | 18.81±0.12 | 10.80±0.17 | 14.22±0.10 | 17.89±0.17 | |
U0126组 | |||||
12 h | 21.50±0.06 | 8.13±0.16 | 6.21±0.07 | 16.36±0.17 | |
48 h | 23.81±0.12 | 6.80±0.19 | 10.97±0.07 | 15.29±0.06 |
组别 | S期 | G2期 | |||
---|---|---|---|---|---|
MCF7/TAMR细胞 | T47D/TAMR细胞 | MCF7/TAMR细胞 | T47D/TAMR细胞 | ||
对照组 | 18.81±0.12 | 10.80±0.17 | 14.22±0.10 | 17.89±0.17 | |
U0126组 | |||||
12 h | 21.50±0.06 | 8.13±0.16 | 6.21±0.07 | 16.36±0.17 | |
48 h | 23.81±0.12 | 6.80±0.19 | 10.97±0.07 | 15.29±0.06 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
DOI URL |
[2] |
HANKER A B, SUDHAN D R, ARTEAGA C L. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4):496-513.
DOI URL |
[3] |
OSBORNE C K, SCHIFF R. Mechanisms of endocrine resistance in breast cancer[J]. Annu Rev Med, 2011, 62:233-247.
DOI URL |
[4] |
DALY M B, PAL T, BERRY M P, et al. Genetic/familial high-risk assessment:breast,ovarian,and pancreatic,version 2.2021,NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(1):77-102.
DOI URL |
[5] |
LOIBL S, POORTMANS P, MORROW M, et al. Breast cancer[J]. Lancet, 2021, 397(10286):1750-1769.
DOI URL |
[6] |
ZHAO H, WU L, YAN G, et al. Inflammation and tumor progression:signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1):263.
DOI URL |
[7] |
DI J, HUANG H, QU D, et al. Rap2B promotes proliferation,migration,and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway[J]. Sci Rep, 2015, 5:12363.
DOI URL |
[8] |
YANG X, SHANG P, YU B, et al. Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of snail through suppressing Notch/NF-κB and RAS/RAF/MEK/ERK signaling pathway[J]. Acta Pharm Sin B, 2021, 11(9):2819-2834.
DOI URL |
[9] |
ZHU Y, LIU Y, ZHANG C, et al. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1[J]. Nat Commun, 2018, 9(1):1595.
DOI URL |
[10] | DU RUSQUEC P, BLONZ C, FRENEL J S, et al. Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer[J]. Ther Adv Med Oncol, 2020, 12:1758835920940939. |
[11] |
LU Y, YU Q, LIU J H, et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades[J]. J Biol Chem, 2003, 278(41):40057-40066.
DOI URL |
[12] |
GEBREGIWORGIS T, KANO Y, ST-GERMAIN J, et al. The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors[J]. Nat Commun, 2021, 12(1):6274.
DOI URL |
[13] | VERRET B, CORTES J, BACHELOT T, et al. Efficacy of PI3K inhibitors in advanced breast cancer[J]. Ann Oncol, 2019, 30(Suppl 10):x12-x20. |
[14] |
VAN DER ZWET J C G, BUIJS-GLADDINES J G C A M, CORDO' V, et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance[J]. Leukemia, 2021, 35(12):3394-3405.
DOI URL |
[15] |
HAN S, REN Y, HE W, et al. ERK-mediated phosphorylation regulates SOX10 sumoylation and targets expression in mutant BRAF melanoma[J]. Nat Commun, 2018, 9(1):28.
DOI URL |
[16] |
MARTIN E, AGAZIE Y M. SHP2 potentiates the oncogenic activity of β-catenin to promote triple-negative breast cancer[J]. Mol Cancer Res, 2021, 19(11):1946-1956.
DOI URL |
[17] |
MUSCELLA A, STEFÀNO E, CALABRISO N, et al. Role of epidermal growth factor receptor signaling in a Pt(Ⅱ)-resistant human breast cancer cell line[J]. Biochem Pharmacol, 2021, 192:114702.
DOI URL |
[18] | KAVARTHAPU R, ANBAZHAGAN R, DUFAU M L. Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J]. Cancers(Basel), 2021, 13(18):4685. |
[19] |
BROWNE A L, CHARMSAZ S, VAREŠLIJA D, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer[J]. Oncogene, 2018, 37(15):2008-2021.
DOI URL |
[20] |
SIZEMORE G M, PITARRESI J R, BALAKRISHNAN S, et al. The ETS family of oncogenic transcription factors in solid tumours[J]. Nat Rev Cancer, 2017, 17(6):337-351.
DOI URL |
[21] |
AL-AZAWI D, ILROY M M, KELLY G, et al. Ets-2 and p160 proteins collaborate to regulate c-Myc in endocrine resistant breast cancer[J]. Oncogene, 2008, 27(21):3021-3031.
DOI URL |
[22] | DE LUCA A, MAIELLO M R, D'ALESSIO A, et al. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways:role in cancer pathogenesis and implications for therapeutic approaches[J]. Expert Opin Ther Targets, 2012, 16(Suppl 2):S17-S27. |
[23] |
FAN P, JORDAN V C. PERK,beyond an unfolded protein response sensor in estrogen-induced apoptosis in endocrine-resistant breast cancer[J]. Mol Cancer Res, 2022, 20(2):193-201.
DOI URL |
[24] |
QUAN Y, ZHANG X, BUTLER W, et al. The role of N-cadherin/c-Jun/NDRG1 axis in the progression of prostate cancer[J]. Int J Biol Sci, 2021, 17(13):3288-3304.
DOI URL |
[1] | WANG Rong, XING Lianxiang, HUANG Keliang, LI Xin. MiR-374 promoting proliferation and invasion of breast cancer cells by targeting and down-regulating TRIM35 [J]. Laboratory Medicine, 2023, 38(9): 812-817. |
[2] | SUN Chuanyu, ZHAO Xiaojun, GE Shengyang, ZHANG Yang. Transcription factors in prostate cancer progression [J]. Laboratory Medicine, 2023, 38(9): 818-824. |
[3] | CHEN Chen, DUAN Qi, LU Jiatuan, ZHAI Xiaojian, WANG Zheng, ZHANG Hao, GUO Man. Expressions of ASH2L and HOXA2 in triple-negative breast cancer patients and their relationship with lymph node metastasis [J]. Laboratory Medicine, 2023, 38(6): 574-578. |
[4] | ZHANG Guoliang, LIU Yiwen, HE Yiqing, XU Jing, YANG Cuixia, GAO Feng, LIU Hua. Changes of serum HAS2 and CD44 levels in breast cancer patients and their clinical significance [J]. Laboratory Medicine, 2023, 38(5): 424-429. |
[5] | LI Mu, GONG Dongliang, XU Liming, PENG Rong. Relationship of XPC rs2228000 polymorphisms and breast cancer [J]. Laboratory Medicine, 2023, 38(3): 235-239. |
[6] | LIU Chong, ZHANG Jing, LI Sheng, ZHAO Qi. Expressions and correlation of miR-335 and Fra-1 in breast cancer [J]. Laboratory Medicine, 2023, 38(2): 143-147. |
[7] | GAO Jianchao, WANG Sisi, ZHANG Zhisheng, ZHANG Jingli, LI Xiaoxia, MA Ke, FENG Zhilin, ZHOU Haifeng, WANG Zhanhai. Efficacy and prognosis evaluation of neo-adjuvant chemotherapy for breast cancer based on miR-206,miR-125 and miR-21 [J]. Laboratory Medicine, 2023, 38(11): 1062-1068. |
[8] | BAI Wei, WANG Bin, GUO Jiarui, ZHU Guangpu, ZHU Liyan. Expression of PBX1 in osteosarcoma tissues and its influence on prognosis [J]. Laboratory Medicine, 2023, 38(10): 926-929. |
[9] | WANG Xiaoye, DONG Guoyou, LIU Zhiying. Relations of ZEB2 and E-Cad expressions in breast cancer tissues with prognosis [J]. Laboratory Medicine, 2022, 37(9): 815-820. |
[10] | YU Fangfang, ZHAO Qi, YANG Liping, WANG Chenyu. Correlation of hematological indexes and expression of HER-2 in patients with breast cancer [J]. Laboratory Medicine, 2022, 37(6): 514-517. |
[11] | ZHANG Xinyue, CHEN Liang, ZHENG Yu. Correlation between serum C peptide and insulin-like growth factor binding protein 3 and the risk of breast cancer patient death [J]. Laboratory Medicine, 2022, 37(1): 36-40. |
[12] | LIN Jiafei, CHEN Xiaosong, WU Beiying, CAI Gang, LIN Lin. 21-Gene recurrence score in mucinous breast cancer [J]. Laboratory Medicine, 2021, 36(7): 714-718. |
[13] | YUAN Muge, WU Wenjian, HU Zhaohui, CHEN Jiachang, YU Shihui, OU Xiaohua, MAO Linlin, WU Haiyan. Germline mutation detection in early-stage breast cancer by next-generation sequencing [J]. Laboratory Medicine, 2021, 36(3): 325-329. |
[14] | LIU Xiufen, AO Hongfeng, AO Jinping. Expression of programmed cell death 5 in breast cancer and its clinical value [J]. Laboratory Medicine, 2021, 36(11): 1151-1158. |
[15] | LI Chanchan, WANG Ru, LUO Wenying. Research progress of Pseudomonas aeruginosa transcription factor PsrA [J]. Laboratory Medicine, 2020, 35(8): 832-836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||