Laboratory Medicine ›› 2017, Vol. 32 ›› Issue (10): 933-940.DOI: 10.3969/j.issn.1673-8640.2017.010.022
• Orginal Article • Previous Articles Next Articles
XU Yong, ZHENG Lei
Received:
2016-07-21
Online:
2017-10-20
Published:
2017-11-20
CLC Number:
XU Yong, ZHENG Lei. Urine extracelluar vesicle determination and its research progress[J]. Laboratory Medicine, 2017, 32(10): 933-940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2017.010.022
方法 | 原理 | 优点 | 局限性 |
---|---|---|---|
超高速离心[ | 基于EV大小和密度不同沉淀 | 保持EV完整性,利于RNA、蛋 白质分析 | 耗时长、工作量大、 需特殊设备 |
超高速离心+蔗糖梯度[ | 在超高速离心基础上,据密度不同EV悬浮于不同浓度蔗糖溶液中 | 去除高丰度蛋白,利于蛋白质 分析,可将EV分成不同的群 | 耗时长、步骤复杂、 不适宜大批量标本 |
超滤法[ | 基于EV大小不同分离 | 简单、快速、标本量小 | 有蛋白污染、不适宜 RNA、蛋白质分析 |
离心-尺寸排阻法[ | 基于EV大小不同分离 | 去除高丰度蛋白,利于蛋白质 分析 | 耗时长、工作量大、 提取效率较低 |
沉淀法[ | 基于聚乙二醇分离 | 简单、快速、操作标准化、利 于miRNA分析 | 有蛋白污染,不适宜 蛋白质分析 |
免疫亲和力法[ | 基于EV标志物与其抗体特异性结合 分离 | 能得到某一特定类型EV | 非特异性EV |
微流控法[ | 基于液流力学分离 | 简便、快速、可将EV分成不同 的群 | 提取效率不高、不适 宜大标本量标本 |
液压透析法[ | 基于EV大小不同分离 | 可处理大量标本、保持EV完整 性、无需特殊设备 | 需后续处理高丰度蛋 白 |
方法 | 原理 | 优点 | 局限性 |
---|---|---|---|
超高速离心[ | 基于EV大小和密度不同沉淀 | 保持EV完整性,利于RNA、蛋 白质分析 | 耗时长、工作量大、 需特殊设备 |
超高速离心+蔗糖梯度[ | 在超高速离心基础上,据密度不同EV悬浮于不同浓度蔗糖溶液中 | 去除高丰度蛋白,利于蛋白质 分析,可将EV分成不同的群 | 耗时长、步骤复杂、 不适宜大批量标本 |
超滤法[ | 基于EV大小不同分离 | 简单、快速、标本量小 | 有蛋白污染、不适宜 RNA、蛋白质分析 |
离心-尺寸排阻法[ | 基于EV大小不同分离 | 去除高丰度蛋白,利于蛋白质 分析 | 耗时长、工作量大、 提取效率较低 |
沉淀法[ | 基于聚乙二醇分离 | 简单、快速、操作标准化、利 于miRNA分析 | 有蛋白污染,不适宜 蛋白质分析 |
免疫亲和力法[ | 基于EV标志物与其抗体特异性结合 分离 | 能得到某一特定类型EV | 非特异性EV |
微流控法[ | 基于液流力学分离 | 简便、快速、可将EV分成不同 的群 | 提取效率不高、不适 宜大标本量标本 |
液压透析法[ | 基于EV大小不同分离 | 可处理大量标本、保持EV完整 性、无需特殊设备 | 需后续处理高丰度蛋 白 |
疾病 | 标志物 | 分离方法 | 参考文献 |
---|---|---|---|
急性肾损伤 | Fetuin A | 超高速离心法 | [26] |
ATF3 | 超高速离心法 | [27] | |
NHE3 | 超高速离心法 | [28] | |
肾脏缺血再灌注 | 水通道蛋白-1 | 超高速离心法 | [29] |
局灶节段性肾小球硬化 | Wilm's tumor 1 | 超高速离心法 | [30] |
IgA肾病 | α1-抗胰酶蛋白、氨肽酶N、vasorin前体、血浆铜蓝蛋白 | 超高速离心联合蔗糖梯度法 | [31] |
糖尿病肾病 | miR-130、 miR-145、 miR-155 和 miR-424 | 超高速离心法 | [32] |
明胶酶、血浆铜蓝蛋白 | 超高速离心法 | [33] | |
肾小球疾病 | 二肽基肽酶4 | 滤器-离心法 | [34] |
AMBP、MLL3和 VDAC1 | 超高速离心法 | [35] | |
ADAM10 | 超高速离心法 | [36] | |
肾纤维化 | miR-29c和miR-200 | 超高速离心法 | [37] |
CD2AP | 超高速离心法 | [38] | |
慢性肾病 | IL-18和 NGAL | 超滤法 | [39] |
肾脏移植 | NGAL | 超高速离心法 | [40] |
CD133 | 超高速离心法 | [41] | |
多囊肾 | PKD1、PKD2和PKHD1 | 超高速离心法 | [42] |
前列腺癌 | ITGA3和ITGB1 | 超高速离心法 | [24] |
miR-34a | 超高速离心法 | [43] | |
LncRNA-p21 | 尿液外泌体RNA分离试剂盒 | [44] | |
TMPRSS2:ERG融合基因和PCA-3 | 超高速离心法 | [45] | |
TM256和LAMTOR1 | 超高速离心法 | [46] | |
钙黏蛋白3 | 超高速离心法 | [47] | |
膀胱癌 | EDIL-3 | 超高速离心联合蔗糖梯度法 | [48] |
LASS2和GALNT1 | 超高速离心法 | [49] | |
TACSTD2 | 超高速离心法 | [50] | |
肾癌 | MMP-9、DKK4、EMMPRIN和PODXL | 超高速离心法 | [51] |
类风湿关节炎 | CD14、CD3和CD19 | 超高速离心法 | [52] |
帕金森病 | Ser(P)-1292 LRRK2 | 超高速离心法 | [53] |
疾病 | 标志物 | 分离方法 | 参考文献 |
---|---|---|---|
急性肾损伤 | Fetuin A | 超高速离心法 | [26] |
ATF3 | 超高速离心法 | [27] | |
NHE3 | 超高速离心法 | [28] | |
肾脏缺血再灌注 | 水通道蛋白-1 | 超高速离心法 | [29] |
局灶节段性肾小球硬化 | Wilm's tumor 1 | 超高速离心法 | [30] |
IgA肾病 | α1-抗胰酶蛋白、氨肽酶N、vasorin前体、血浆铜蓝蛋白 | 超高速离心联合蔗糖梯度法 | [31] |
糖尿病肾病 | miR-130、 miR-145、 miR-155 和 miR-424 | 超高速离心法 | [32] |
明胶酶、血浆铜蓝蛋白 | 超高速离心法 | [33] | |
肾小球疾病 | 二肽基肽酶4 | 滤器-离心法 | [34] |
AMBP、MLL3和 VDAC1 | 超高速离心法 | [35] | |
ADAM10 | 超高速离心法 | [36] | |
肾纤维化 | miR-29c和miR-200 | 超高速离心法 | [37] |
CD2AP | 超高速离心法 | [38] | |
慢性肾病 | IL-18和 NGAL | 超滤法 | [39] |
肾脏移植 | NGAL | 超高速离心法 | [40] |
CD133 | 超高速离心法 | [41] | |
多囊肾 | PKD1、PKD2和PKHD1 | 超高速离心法 | [42] |
前列腺癌 | ITGA3和ITGB1 | 超高速离心法 | [24] |
miR-34a | 超高速离心法 | [43] | |
LncRNA-p21 | 尿液外泌体RNA分离试剂盒 | [44] | |
TMPRSS2:ERG融合基因和PCA-3 | 超高速离心法 | [45] | |
TM256和LAMTOR1 | 超高速离心法 | [46] | |
钙黏蛋白3 | 超高速离心法 | [47] | |
膀胱癌 | EDIL-3 | 超高速离心联合蔗糖梯度法 | [48] |
LASS2和GALNT1 | 超高速离心法 | [49] | |
TACSTD2 | 超高速离心法 | [50] | |
肾癌 | MMP-9、DKK4、EMMPRIN和PODXL | 超高速离心法 | [51] |
类风湿关节炎 | CD14、CD3和CD19 | 超高速离心法 | [52] |
帕金森病 | Ser(P)-1292 LRRK2 | 超高速离心法 | [53] |
[1] | GÁMEZ-VALERO A,LOZANO-RAMOS S I,BANCU I,et al. Urinary extracellular vesicles as source of biomarkers in kidney diseases[J]. Front Immunol,2015,6:6. |
[2] | WITWER K W,BUZÁS E I,BEMIS L T,et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. J Extracell Vesicles,2013,2. |
[3] | MITCHELL P J,WELTON J,STAFFURTH J,et al.Can urinary exosomes act as treatment response markers in prostate cancer?[J]. J Transl Med,2009,7:4. |
[4] | PISITKUN T,JOHNSTONE R,KNEPPER M A.Discovery of urinary biomarkers[J]. Mol Cell Proteomics,2006,5(10):1760-1771. |
[5] | ZHOU H,YUEN P S,PISITKUN T,et al.Collection,storage,preservation,and normalization of human urinary exosomes for biomarker discovery[J]. Kidney Int,2006,69(8):1471-1476. |
[6] | LV L L,CAO Y,LIU D,et al.Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery[J]. Int J Biol Sci,2013,9(10):1021-1031. |
[7] | YUANA Y,BÖING A N,GROOTEMAAT A E,et al. Handling and storage of human body fluids for analysis of extracellular vesicles[J]. J Extracell Vesicles,2015,4:29260. |
[8] | ALVAREZ M L,KHOSROHEIDARI M,KANCHI RAVI R,et al.Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int,2012,82(9):1024-1032. |
[9] | LIN H,LIU X,XU X,et al.Quantification and size distribution of 24-hour urinary extracellular vesicles from healthy adults[J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(11):1530-1534. |
[10] | GONZALES P A,ZHOU H,PISITKUN T,et al.Isolation and purification of exosomes in urine[J]. Methods Mol Biol,2010,641:89-99. |
[11] | MUSANTE L,SARASWAT M,RAVIDA A,et al.Recovery of urinary nanovesicles from ultracentrifugation supernatants[J]. Nephrol Dial Transplant,2013,28(6):1425-1433. |
[12] | 罗伊,王从容. 影响尿液储存稳定性的常见因素[J]. 检验医学,2014,29(1):86-90. |
[13] | ROOD I M,DEEGENS J K,MERCHANT M L,et al.Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome[J]. Kidney Int,2010,78(8):810-816. |
[14] | CHERUVANKY A,ZHOU H,PISITKUN T,et al.Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator[J]. Am J Physiol:Renal Physiol,2007,292(5):F1657-F1661. |
[15] | MUSANTE L,TATARUCH D E,HOLTHOFER H.Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy[J]. Front Endocrinol(Lausanne),2014,5:149. |
[16] | TAYLOR D D,ZACHARIAS W,GERCEL-TAYLOR C.Exosome isolation for proteomic analyses and RNA profiling[J]. Methods Mol Biol,2011,728:235-246. |
[17] | SANTANA S M,ANTONYAK M A,CERIONE R A,et al.Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations[J]. Biomed Microdevices,2014,16(6):869-877. |
[18] | LIGA A,VLIEGENTHART A D,OOSTHUYZEN W,et al.Exosome isolation:a microfluidic road-map[J]. Lab Chip,2015,15(11):2388-2394. |
[19] | MUSANTE L,TATARUCH D,GU D,et al.A simplified method to recover urinary vesicles for clinical applications,and sample banking[J]. Sci Rep,2014,4:7532. |
[20] | LIU X,CHINELLO C,MUSANTE L,et al.Intraluminal proteome and peptidome of human urinary extracellular vesicles[J]. Proteomics-Clin Appl,2015,9(5-6):568-573. |
[21] | HUANG X,YUAN T,LIANG M,et al.Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer[J]. Eur Urol,2015,67(1):33-41. |
[22] | SAMSONOV R,SHTAM T,BURDAKOV V,et al.Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis:application for prostate cancer diagnostic[J]. Prostate,2016,76(1):68-79. |
[23] | WANG D,SUN W.Urinary extracellular microvesicles:isolation methods and prospects for urinary proteome[J]. Proteomics,2014,14(16):1922-1932. |
[24] | BIJNSDORP I V,GELDOF A A,LAVAEI M,et al.Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients[J]. J Extracell Vesicles,2013,2. |
[25] | 林铖,姜傥. 液体活检技术在非小细胞肺癌患者EGFR-TKI继发耐药中的应用[J]. 检验医学,2016,31(10):835-843. |
[26] | ZHOU H,PISITKUN T,APONTE A,et al.Exosomal fetuin-a identified by proteomics:a novel urinary biomarker for detecting acute kidney injury[J]. Kidney Int,2006,70(10):1847-1857. |
[27] | ZHOU H,CHERUVANKY A,HU X,et al.Urinary exosomal transcription factors,a new class of biomarkers for renal disease[J]. Kidney Int,2008,74(5):613-621. |
[28] | DU CHEYRON D,DAUBIN C,POGGIOLI J,et al.Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF[J]. Am J Kidney Dis,2003,42(3):497-506. |
[29] | SONODA H,YOKOTA-IKEDA N,OSHIKAWA S,et al.Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol,2009,297(4):F1006-F1016. |
[30] | ZHOU H,KAJIYAMA H,TSUJI T,et al.Urinary exosomal Wilms' tumor-1 as a potential biomarker for podocyte injury[J]. Am J Physiol Renal Physiol,2013,305(4):F553-F559. |
[31] | MOON P,LEE J,YOU S,et al.Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy[J]. Proteomics,2011,11(12):2459-2475. |
[32] | BARUTTA F,TRICARICO M,CORBELLI A,et al.Urinary exosomal microRNAs in incipient diabetic nephropathy[J]. PLoS One,2013,8(11):e73798. |
[33] | GUDEHITHLU K P,GARCIA-GOMEZ I,VERNIK J,et al.In diabetic kidney disease urinary exosomes better represent kidney specific protein alterations than whole urine[J]. Am J Nephrol,2016,42(6):418-424. |
[34] | SUN A L,DENG J T,GUAN G J,et al.Dipeptidyl peptidase-Ⅳ is a potential molecular biomarker in diabetic kidney disease[J]. Diab Vasc Dis Res,2012,9(4):301-308. |
[35] | ZUBIRI I,POSADA-AYALA M,SANZ-MAROTO A,et al.Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis[J]. J Proteomics, 2014,96:92-102. |
[36] | GUTWEIN P,SCHRAMME A,ABDEL-BAKKY M S,et al. ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases[J]. J Biomed Sci,2010,17:3. |
[37] | LV L L,CAO Y H,NI H F,et al.MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol,2013,305(8):F1220-F1227. |
[38] | LV L L,CAO Y H,PAN M M,et al.CD2AP mRNA in urinary exosome as biomarker of kidney disease[J]. Clin Chim Acta,2014,428:26-31. |
[39] | PEAKE P W,PIANTA T J,SUCCAR L,et al.A comparison of the ability of levels of urinary biomarker proteins and exosomal mRNA to predict outcomes after renal transplantation[J]. PLoS One,2014,9(2):e98644. |
[40] | ALVAREZ S,SUAZO C,BOLTANSKY A,et al.Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc,2013,45(10):3719-3723. |
[41] | DIMUCCIO V,RANGHINO A,PRATICÒ BARBATO L,et al.Urinary CD133+ extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One,2014,9(8):e104490. |
[42] | HOGAN M C,MANGANELLI L,WOOLLARD J R,et al.Characterization of PKD protein-positive exosome-like vesicles[J]. J Am Soc Nephrol,2009,20(2):278-288. |
[43] | CORCORAN C,RANI S,O'DRISCOLL L. MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression[J]. Prostate,2014,74(13):1320-1334. |
[44] | ISIN M,UYSALER E,ÖZGÜR E,et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease[J]. Front Genet,2015,6:168. |
[45] | NILSSON J,SKOG J,NORDSTRAND A,et al.Prostate cancer-derived urine exosomes:a novel approach to biomarkers for prostate cancer[J]. Br J Cancer,2009,100(10):1603-1607. |
[46] | OVERBYE A,SKOTLAND T,KOEHLER C J,et al.Identification of prostate cancer biomarkers in urinary exosomes[J]. Oncotarget,2015,6(30):30357-30376. |
[47] | ROYO F,ZUNIGA-GARCIA P,TORRANO V,et al.Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer[J]. Oncotarget,2016,7(6):6835-6846. |
[48] | BECKHAM C J,OLSEN J,YIN P N,et al.Bladder cancer exosomes contain edil-3/del1 and facilitate cancer progression[J]. J Urol,2014,192(2):583-592. |
[49] | PEREZ A,LOIZAGA A,ARCEO R,et al.A pilot study on the potential of RNA-associated to urinary vesicles as a suitable non-invasive source for diagnostic purposes in bladder cancer[J]. Cancers(Basel),2014,6(1):179-192. |
[50] | CHEN C L,LAI Y F,TANG P,et al.Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients[J]. J Proteome Res,2012,11(12):5611-5629. |
[51] | RAIMONDO F,MOROSI L,CORBETTA S,et al.Differential protein profiling of renal cell carcinoma urinary exosomes[J]. Mol Biosyst,2013,9(6):1220-1233. |
[52] | VIÑUELA-BERNI V,DONÍZ-PADILLA L,FIGUEROA-VEGA N,et al. Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease[J]. Clin Exp Immunol,2015,180(3):442-451. |
[53] | FRASER K B,RAWLINS A B,CLARK R G,et al.Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease[J]. Mov Disord,2016, 31(10):1543-1550. |
[54] | BARRERA-CHIMAL J,PEREZ-VILLALVA R,CORTES-GONZALEZ C,et al.Hsp72 is an early and sensitive biomarker to detect acute kidney injury[J]. EMBO Mol Med,2011,3(1):5-20. |
[55] | HERR P,KORNIYCHUK G,YAMAMOTO Y,et al.Regulation of TGF-(beta) signalling by N- |
acetylgalactosaminyltransferase-like 1[J]. Development,2008,135(10):1813-1822. | |
[56] | MESICEK J,LEE H,FELDMAN T,et al.Ceramide synthases 2,5,and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells[J]. Cell Signal,2010,22(9):1300-1307. |
[57] | SKOTLAND T,EKROOS K,KAUHANEN D,et al.Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers[J]. Eur J Cancer,2017,70:122-132. |
[58] | LI Y,ZHANG Y,QIU F,et al.Proteomic identification of exosomal LRG1:a potential urinary biomarker for detecting NSCLC[J]. Electrophoresis,2011,32(15):1976-1983. |
[1] | WANG Gangqiang, DIAO Yanjun, HE Juan, YANG Ruofan, YAN Hongbin, WANG Pei, LU Pei, LI Chenghua, XIAO Fengjing, ZHENG Shanluan, HAO Xiaoke, CHENG Xiang, LIU Jiayun. Establishment,verification and clinical application of automatic urine analysis system audit rule [J]. Laboratory Medicine, 2023, 38(10): 957-966. |
[2] | WU Yating, LI Zhuolin, LEI Yan, JIA Ruxue, ZHANG Shenghang, WANG Shuiliang. Research progress of miRNA in urine as a biomarker for common malignant tumors [J]. Laboratory Medicine, 2023, 38(1): 94-99. |
[3] | PAN Fen, PAN Yuxuan, SHI Yingying, YU Fangyuan, ZHANG Hong. UroQuick rapid urine culture technique for urinary tract infection in children [J]. Laboratory Medicine, 2022, 37(7): 652-656. |
[4] | Danqu, Luosangcizhen, Zerenqucuo, MA Chaochao, LIU Zhijuan. Combined detection of urinary total protein to avoid the hook effect of urinary microalbumin [J]. Laboratory Medicine, 2021, 36(5): 477-479. |
[5] | WANG Jinduo, CUI Yunqing, ZHANG Hui, Yanhua, LI Yinghua. Effect of vulva cleaning operation to the determination results of urinary biochemical indexes [J]. Laboratory Medicine, 2021, 36(11): 1169-1171. |
[6] | XIAO Nan, ZHOU Jia, DUAN Ning, ZHU Tianyang, WANG Lijun. Establishment and evaluation of fast predictive algorithm for urinary tract infection pathogen in patients with nephrolithiasis [J]. Laboratory Medicine, 2021, 36(1): 75-79. |
[7] | ZHOU Xin, ZHANG Jue, CHEN Liying. Study on the main causes for false increasing of white blood cells and small round epithelial cells determined by UF-1000i urine sediment analyzer [J]. Laboratory Medicine, 2020, 35(5): 444-446. |
[8] | ZHOU Xin, ZHANG Jue, CHEN Liying. Study on the main causes for false increasing of white blood cells and small round epithelial cells determined by UF-1000i urine sediment analyzer [J]. Laboratory Medicine, 2020, 35(5): 444-446. |
[9] | YANG Meiling, LIU Hao, YANG Lin, ZHU Ping. Research progress on the biomarkers of urinary tract infection [J]. Laboratory Medicine, 2020, 35(2): 178-180. |
[10] | YU Shuping, YUAN Dandan, CUI Ming, JING Rongrong, WANG Huimin. Development of BCR-ABL1 candidate reference material and evaluation of measurement uncertainty [J]. Laboratory Medicine, 2019, 34(8): 752-757. |
[11] | WANG Xueying, LIU Huan, ZHOU Xiang, YANG Ruofan, WANG Chun'e, MA Lian, BAI Bifeng, LI Feng. Role of urinary aquaporin 2 in evaluating proximal tubular injury [J]. Laboratory Medicine, 2019, 34(7): 626-629. |
[12] | WEI Yongtao, WANG Songxia. Analysis of urinary iodine levels of pregnant women in Qingdao [J]. Laboratory Medicine, 2019, 34(10): 905-907. |
[13] | TIAN Guoli, ZHOU Zhuo, GUO Jing, WANG Yanmin, JI Wei. Role of gas chromatography-mass spectrometry in inherited metabolic diseases [J]. Laboratory Medicine, 2019, 34(10): 932-936. |
[14] | YING Xiao, WANG Yuying, WANG Zaihong, WANG Zhenhua. Influence of baicalein on in vitro anti-tumor activity of docetaxel for prostate cancer [J]. Laboratory Medicine, 2018, 33(6): 556-562. |
[15] | WANG Lei, CHEN Weiqin, XU Minyi, CHEN Xudong. Establishment of magnetic particle chemiluminescence for the determination of urinary type Ⅳ collagen and its clinical application in membranous nephropathy [J]. Laboratory Medicine, 2018, 33(5): 442-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||