›› 2013, Vol. 28 ›› Issue (10): 948-951.DOI: 10.3969/j.issn.1673-8640.2013.10.021
• Orignal Article • Previous Articles Next Articles
Received:
2013-04-23
Online:
2013-10-30
Published:
2013-10-29
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2013.10.021
[1] 国际糖尿病足工作组.糖尿病足国际临床指南[M]. 许樟荣,敬 华,译.北京:人民军医出版社,2003:6-9. [2] Malgrange D. Physiopathology of the diabetic foot [J].Rev Med Interne,2008,29(Suppl 2):S231-S237. [3] 李 丁,贾伟平.血糖波动与血管并发症[J].上海医学,2011,34(5):401-403. [4] 王 慧,娄晋宁.糖尿病微血管病变机制的研究进展[J].医学研究杂志,2010,39(8):101-104. [5] Giacco F, Brownlee M. Oxidative stress and diabetic complications [J].Circ Res, 2010 ,107(9):1058-1070. [6] Montezano AC,Touyz RM. Reactive oxygen species and endothelial function-role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases [J]. Basic ClinPharmacol Toxicol, 2012,110(1):87-94. [7] 孟庆元,林炜栋,陈向芳. AGE-RAGE系统与糖尿病足综合征的发病机制及治疗进展[J]. 药学服务与研究,2009,9(2):118-121. [8] Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications [J].Nat Clin Pract Endocrinol Metab,2008,4(5):285-293. [9] 方 丽,杨俊伟.糖基化终末产物介导糖尿病足细胞损伤的机制及整合素连接激酶的影响[J].中华糖尿病杂志,2010,2(5):380-383. [10] Tuttle KR, Anderberg RJ, Cooney SK,et al. Oxidative stress mediates protein kinaes C activation and advanced glycation end product formation in a mesangial cell model of diabetes and high protein diet [J]. Am J Nephrol,2009,29(3):171-180. [11] Arikawa E,Ma RC, Isshiki K, et al. Effects of insulin replacements,inhibitors of angiotensin,and PKCbeta′s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats [J]. Diabetes,2007,56(5):1410-1420. [12] Folli F, Corradi D, Fanti P. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach [J].Curr Diabetes Rev, 2011,7(5):313-324. [13] Brownlee M. The pathobiology of diabetic complications:a unifying mechanism [J].Diabetes,2005,54(6):1615-1625. [14] Urso C, Caimi G. Oxidative stress and endothelial dysfunction [J].Minerva Med, 2011,102(1):59-77. [15] Yilmaz MI,Saglam M, Carrero JJ, et al. Serum visfatin concentration and endothelial dysfunction in chronic kidney disease [J].Nephrol Dial Transplant,2008,23(3):959-965. [16] Rafikov R, Fonseca FV, Kumar S,et al. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity[J]. J Endocrinol,2011,210(3):271-284. [17] Rogers SC, Zhang X, Azhar G, et al. Exposure to high or low glucose levels aaccelerates the appearance of markers of endothelial cell senescence and induces dysregulation of nitric oxide synthase[J].J Gerontol A Biol Sci, 2013 [Epub ahead of print]. [18] Imamura A, Takahashi R, Murakami R,et al. The effects of endothelial nitric oxide synthase gene polymorphisms on endothelial function and metabolic risk factors in healthy subjects: the significance of plasma adiponectin levels[J].Eur J Endocrinol, 2008, 158(2):189-195. [19] Tousoulis D, Kampoli AM, Tentolouris C,et al.The role of nitric oxide on endothelial function[J]. Curr Vasc Pharmacol,2012,10(1):4-18. [20] Soro-Paavonen A, Zhang WZ, Venardos K, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase[J]. J Hypertens,2010,28(4):780-788. [21] 禹远远,王瑞英,郝咏梅. 2型糖尿病与内皮细胞功能紊乱[J] .国外医学老年医学分册,2008,29(4):165-168. [22] Uslu S, Kebapci N, Kara M,et al.Relationship between adipocytokines and cardiovascular risk factors in patients with type 2 diabetes mellitus[J].Exp Ther Med,2012,4(1):113-120. [23] Fasshauer M,Waldeyer T,Seeger J,et al. Serum levels of the adipokine visfatin are increased in preeclampsia[J].Clin Endocrinol(Oxf),2008,69(1):69-73. [24] Chang YH, Chang DM, Lin KC, et al. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review[J]. Diabetes Metab Res Rev,2011, 27(6):515-527. [25] Hector J, Schwarzloh B, Goehring J,et al. TNF-alpha alters visfatin and adiponectin levels in human fat[J].Horm Metab Res,2007,39(4):250-255. [26] Pernow J, Shemyakin A, Bhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus[J]. Life Sci, 2012,91(13-14):507-516. [27] Donato AJ, Gano LB, Eskurza I, et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase [J].Am J Physiol Heart Circ Physiol,2009,297(1):H425-H432. [28] Feng J, Liu Y, Khabbaz KR, et al. Decreased contractile response to endothelin-1 of peripheral microvasculature from diabetic patients[J].Surgery,2011,149(2):247-252. [29] Ergul A. Endothelin-1 and diabetic complications: focus on the vasculature[J].Pharmacol Res,2011 ,63(6):477-482. |
[1] | TANG Qingqin, QIAO Longwei, YIN Jingping, ZHANG Sheng, FENG Bin, LIANG Yuting. Correlation of peripheral blood monocyte count and serum anti-phospholipase A2 receptor antibody in patients with nephrotic syndrome [J]. Laboratory Medicine, 2023, 38(7): 647-652. |
[2] | WANG Haiping, LI He. BISAP score combined with serum sRAGE for predicting hyperlipidemic acute pancreatitis severity and short-term prognosis [J]. Laboratory Medicine, 2023, 38(7): 653-658. |
[3] | WU Jie, LI Zenghe, CHEN Baorong, KONG Xujing. Establishment of traceable steroid hormone standard curve for dried blood spot samples [J]. Laboratory Medicine, 2023, 38(5): 489-493. |
[4] | . [J]. Laboratory Medicine, 2023, 38(3): 291-293. |
[5] | . [J]. Laboratory Medicine, 2023, 38(1): 100-102. |
[6] | . [J]. Laboratory Medicine, 2022, 37(9): 892-893. |
[7] | SUN Xiaodan, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GAO Feng, YANG Cuixia. Research progress on the role of estrogen receptor in osteosarcoma [J]. Laboratory Medicine, 2022, 37(4): 313-318. |
[8] | SUN Xiaodan, XU Jing, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GAO Feng, YANG Cuixia. Inhibitory effects of antiestrogen on the proliferation and CCL2 expression of osteosarcoma cells [J]. Laboratory Medicine, 2022, 37(4): 319-324. |
[9] | CHEN Si, LIU Hua, LIU Yiwen, HE Yiqing, ZHANG Guoliang, YANG Cuixia, DU Yan, GAO Feng. Clinical significance of combined determination of serum HER-2 and CD44 in colorectal cancer [J]. Laboratory Medicine, 2022, 37(4): 336-341. |
[10] | ZHAO Mingna, ZHANG Chenzi, HONG Qiushuang, LOU Jiatao. Mechanism of IL-8/miR-182 positive feedback regulatory axis in non-small cell lung cancer [J]. Laboratory Medicine, 2022, 37(4): 349-355. |
[11] | ZHANG Zhibin, YANG Wanyong, RUAN Fuwang, WEN Qinghui. Roles of total IgE,sIgE and 25(OH)D in the evaluation of infant atopic dermatitis [J]. Laboratory Medicine, 2022, 37(3): 217-220. |
[12] | . [J]. Laboratory Medicine, 2021, 36(12): 1264-1266. |
[13] | QIU Fang, ZHU Ping, JIANG Peng, WANG Chan. Relation between anti-gp210 antibody,anti-sp100 antibody and ALBI score in patients with primary biliary cholangitis [J]. Laboratory Medicine, 2021, 36(11): 1106-1109. |
[14] | . [J]. Laboratory Medicine, 2021, 36(9): 925-928. |
[15] | LIU Yang, ZHANG Zhiping, PENG Daorong, SONG Liuwei, GE Shengxiang, HAO Xiaoke, LIU Jiayun. Establishment and performance evaluation of chemiluminescent microparticle immunoassay for the determination of high concentration HbsAg [J]. Laboratory Medicine, 2020, 35(10): 1056-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||