Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (10): 1004-1009.DOI: 10.3969/j.issn.1673-8640.2025.10.013
Previous Articles Next Articles
LI Mingchao1, SHEN Tong1, ZHOU Binghe1, DOU Xin1, HU Liang1, CHANG Dong1(
), ZHANG Ze2(
)
Received:2024-07-18
Revised:2024-12-09
Online:2025-10-30
Published:2025-11-07
CLC Number:
LI Mingchao, SHEN Tong, ZHOU Binghe, DOU Xin, HU Liang, CHANG Dong, ZHANG Ze. Evaluation of prognosis prediction effects in acute ischemic stroke patients based on machine learning algorithms[J]. Laboratory Medicine, 2025, 40(10): 1004-1009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.10.013
| 组别 | 例数 | 性别 | 年龄 | 收缩压/kPa | 舒张压/kPa | |||
|---|---|---|---|---|---|---|---|---|
| 男/ [例(%)] | 女/ [例(%)] | 18~59岁/[例(%)] | 60~74岁/[例(%)] | ≥75岁/ [例(%)] | ||||
| 预后良好组 | 319 | 225(70.5) | 94(29.5) | 78(24.5) | 167(52.4) | 74(23.2) | 19.8(18.4,21.5) | 11.6(10.2,12.5) |
| 预后不良组 | 351 | 196(55.8) | 155(44.2) | 44(12.3) | 135(38.5) | 173(49.3) | 20.1(18.4,21.7) | 11.2(10.0,12.4) |
| 统计值 | 15.448 | 51.785 | 0.32 | 0.992 | ||||
| P值 | <0.001 | <0.001 | 0.974 | 0.321 | ||||
| 组别 | 抗血小板药物史 | 抗高血压药物史 | 降糖药物史 | 吸烟史 | ||||
| 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | |
| 预后良好组 | 64(20.1) | 255(79.9) | 203(63.6) | 116(36.4) | 91(28.5) | 228(71.5) | 108(33.9) | 210(65.8) |
| 预后不良组 | 76(21.7) | 275(78.3) | 252(71.8) | 99(28.2) | 137(39.0) | 214(61.0) | 86(24.5) | 265(75.5) |
| 统计值 | 0.256 | 5.104 | 8.215 | 8.354 | ||||
| P值 | 0.613 | 0.024 | 0.004 | 0.015 | ||||
| 组别 | 饮酒史 | 心脏病史 | 高血压史 | 糖尿病史 | ||||
| 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | |
| 预后良好组 | 65(20.4) | 254(79.6) | 54(16.9) | 265(83.1) | 214(67.1) | 105(32.9) | 91(28.5) | 228(71.5) |
| 预后不良组 | 55(15.7) | 296(84.3) | 89(25.4) | 262(74.6) | 262(74.6) | 89(25.4) | 138(39.3) | 213(60.7) |
| 统计值 | 2.518 | 7.071 | 4.642 | 8.648 | ||||
| P值 | 0.113 | 0.008 | 0.031 | 0.003 | ||||
| 组别 | 例数 | 性别 | 年龄 | 收缩压/kPa | 舒张压/kPa | |||
|---|---|---|---|---|---|---|---|---|
| 男/ [例(%)] | 女/ [例(%)] | 18~59岁/[例(%)] | 60~74岁/[例(%)] | ≥75岁/ [例(%)] | ||||
| 预后良好组 | 319 | 225(70.5) | 94(29.5) | 78(24.5) | 167(52.4) | 74(23.2) | 19.8(18.4,21.5) | 11.6(10.2,12.5) |
| 预后不良组 | 351 | 196(55.8) | 155(44.2) | 44(12.3) | 135(38.5) | 173(49.3) | 20.1(18.4,21.7) | 11.2(10.0,12.4) |
| 统计值 | 15.448 | 51.785 | 0.32 | 0.992 | ||||
| P值 | <0.001 | <0.001 | 0.974 | 0.321 | ||||
| 组别 | 抗血小板药物史 | 抗高血压药物史 | 降糖药物史 | 吸烟史 | ||||
| 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | |
| 预后良好组 | 64(20.1) | 255(79.9) | 203(63.6) | 116(36.4) | 91(28.5) | 228(71.5) | 108(33.9) | 210(65.8) |
| 预后不良组 | 76(21.7) | 275(78.3) | 252(71.8) | 99(28.2) | 137(39.0) | 214(61.0) | 86(24.5) | 265(75.5) |
| 统计值 | 0.256 | 5.104 | 8.215 | 8.354 | ||||
| P值 | 0.613 | 0.024 | 0.004 | 0.015 | ||||
| 组别 | 饮酒史 | 心脏病史 | 高血压史 | 糖尿病史 | ||||
| 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | 是/ [例(%)] | 否/ [例(%)] | |
| 预后良好组 | 65(20.4) | 254(79.6) | 54(16.9) | 265(83.1) | 214(67.1) | 105(32.9) | 91(28.5) | 228(71.5) |
| 预后不良组 | 55(15.7) | 296(84.3) | 89(25.4) | 262(74.6) | 262(74.6) | 89(25.4) | 138(39.3) | 213(60.7) |
| 统计值 | 2.518 | 7.071 | 4.642 | 8.648 | ||||
| P值 | 0.113 | 0.008 | 0.031 | 0.003 | ||||
| 组别 | 例数 | WBC计数/(×109L-1) | NEUT%/% | RBC计数/(×109L-1) | Hb/(g·L-1) | PLT计数/(×109L-1) |
|---|---|---|---|---|---|---|
| 预后良好组 | 319 | 5.9(5.1,6.9) | 59.4(53.0,66.5) | 4.5(4.1,4.8) | 133.0(124.5,144.5) | 198.0(171.0,224.0) |
| 预后不良组 | 351 | 6.3(5.3,7.8) | 61.8(55.3,68.1) | 4.5(4.1,4.8) | 136.0(125.0,146.0) | 198.0(165.0,235.0) |
| z值 | 2.12 | 1.721 | 0.259 | 0.731 | 0.303 | |
| P值 | 0.034 | 0.085 | 0.795 | 0.465 | 0.762 | |
| 组别 | CRP/(mg·L-1) | PT/s | DD/(mg·L-1) | APTT/s | Fib/(g·L-1) | HbA1c/% |
| 预后良好组 | 1.6(0.6,3.1) | 10.9(10.5,11.6) | 0.4(0.2,0.7) | 26.3(24.1,29.5) | 2.7(2.3,3.7) | 6.3(5.7,7.7) |
| 预后不良组 | 1.3(0.5,3.4) | 11.3(10.8,11.9) | 0.4(0.2,0.8) | 27.8(24.8,31.4) | 3.0(2.6,3.5) | 6.3(5.9,7.6) |
| z值 | 0.93 | 2.642 | 0.844 | 2.482 | 1.251 | 0.801 |
| P值 | 0.352 | 0.008 | 0.399 | 0.013 | 0.211 | 0.423 |
| 组别 | Hcy/(μmol·L-1) | TC/(nmol·L-1) | TG/(mmol·L-1) | HDL-C/(mmol·L-1) | LDL-C/(mmol·L-1) | Glu/(mmol·L-1) |
| 预后良好组 | 13.1(11.4,19.7) | 4.1(3.6,4.7) | 1.4(1.0,2.2) | 1.0(0.8,1.2) | 2.6(2.2,3.2) | 5.1(4.7,6.7) |
| 预后不良组 | 14.1(11.4,18.3) | 4.0(3.3,4.8) | 1.2(1.0,1.8) | 1.0(0.9,1.2) | 2.6(1.9,3.3) | 5.3(4.6,6.7) |
| z值 | 0.353 | 0.732 | 1.866 | 1.734 | 0.713 | 0.042 |
| P值 | 0.724 | 0.464 | 0.062 | 0.083 | 0.476 | 0.967 |
| 组别 | 叶酸/(nmol·L-1) | Vit B12/(pmol·L-1) | NIHSS评分/分 | GCS评分/分 | barthel指数 | |
| 预后良好组 | 13.9(9.2,20.7) | 287.0(216.0,331.5) | 0.0(0.0,1.5) | 15.0(15.0,15.0) | 100.0(90.0,100.0) | |
| 预后不良组 | 14.5(9.5,21.8) | 260.0(206.0,344.0) | 2.0(1.0,4.0) | 15.0(15.0,15.0) | 85.0(70.0,100.0) | |
| z值 | 0.475 | 0.528 | 6.382 | 1.464 | 4.286 | |
| P值 | 0.635 | 0.597 | <0.001 | 0.143 | <0.001 | |
| 组别 | 例数 | WBC计数/(×109L-1) | NEUT%/% | RBC计数/(×109L-1) | Hb/(g·L-1) | PLT计数/(×109L-1) |
|---|---|---|---|---|---|---|
| 预后良好组 | 319 | 5.9(5.1,6.9) | 59.4(53.0,66.5) | 4.5(4.1,4.8) | 133.0(124.5,144.5) | 198.0(171.0,224.0) |
| 预后不良组 | 351 | 6.3(5.3,7.8) | 61.8(55.3,68.1) | 4.5(4.1,4.8) | 136.0(125.0,146.0) | 198.0(165.0,235.0) |
| z值 | 2.12 | 1.721 | 0.259 | 0.731 | 0.303 | |
| P值 | 0.034 | 0.085 | 0.795 | 0.465 | 0.762 | |
| 组别 | CRP/(mg·L-1) | PT/s | DD/(mg·L-1) | APTT/s | Fib/(g·L-1) | HbA1c/% |
| 预后良好组 | 1.6(0.6,3.1) | 10.9(10.5,11.6) | 0.4(0.2,0.7) | 26.3(24.1,29.5) | 2.7(2.3,3.7) | 6.3(5.7,7.7) |
| 预后不良组 | 1.3(0.5,3.4) | 11.3(10.8,11.9) | 0.4(0.2,0.8) | 27.8(24.8,31.4) | 3.0(2.6,3.5) | 6.3(5.9,7.6) |
| z值 | 0.93 | 2.642 | 0.844 | 2.482 | 1.251 | 0.801 |
| P值 | 0.352 | 0.008 | 0.399 | 0.013 | 0.211 | 0.423 |
| 组别 | Hcy/(μmol·L-1) | TC/(nmol·L-1) | TG/(mmol·L-1) | HDL-C/(mmol·L-1) | LDL-C/(mmol·L-1) | Glu/(mmol·L-1) |
| 预后良好组 | 13.1(11.4,19.7) | 4.1(3.6,4.7) | 1.4(1.0,2.2) | 1.0(0.8,1.2) | 2.6(2.2,3.2) | 5.1(4.7,6.7) |
| 预后不良组 | 14.1(11.4,18.3) | 4.0(3.3,4.8) | 1.2(1.0,1.8) | 1.0(0.9,1.2) | 2.6(1.9,3.3) | 5.3(4.6,6.7) |
| z值 | 0.353 | 0.732 | 1.866 | 1.734 | 0.713 | 0.042 |
| P值 | 0.724 | 0.464 | 0.062 | 0.083 | 0.476 | 0.967 |
| 组别 | 叶酸/(nmol·L-1) | Vit B12/(pmol·L-1) | NIHSS评分/分 | GCS评分/分 | barthel指数 | |
| 预后良好组 | 13.9(9.2,20.7) | 287.0(216.0,331.5) | 0.0(0.0,1.5) | 15.0(15.0,15.0) | 100.0(90.0,100.0) | |
| 预后不良组 | 14.5(9.5,21.8) | 260.0(206.0,344.0) | 2.0(1.0,4.0) | 15.0(15.0,15.0) | 85.0(70.0,100.0) | |
| z值 | 0.475 | 0.528 | 6.382 | 1.464 | 4.286 | |
| P值 | 0.635 | 0.597 | <0.001 | 0.143 | <0.001 | |
| 项目 | AUC | 准确率/% | 敏感性/% | 特异性/% | F1分数 | 阳性预测值 | 阴性预测值 |
|---|---|---|---|---|---|---|---|
| Logistic回归分析 | 0.908 | 85.6 | 77.9 | 93.8 | 0.848 | 0.931 | 0.798 |
| 随机森林 | 0.915 | 86.1 | 80.8 | 91.8 | 0.857 | 0.872 | 0.794 |
| LightGBM | 0.908 | 84.1 | 80.8 | 87.6 | 0.840 | 0.875 | 0.810 |
| 极限梯度提升 | 0.896 | 80.6 | 76.9 | 84.5 | 0.804 | 0.842 | 0.774 |
| 项目 | AUC | 准确率/% | 敏感性/% | 特异性/% | F1分数 | 阳性预测值 | 阴性预测值 |
|---|---|---|---|---|---|---|---|
| Logistic回归分析 | 0.908 | 85.6 | 77.9 | 93.8 | 0.848 | 0.931 | 0.798 |
| 随机森林 | 0.915 | 86.1 | 80.8 | 91.8 | 0.857 | 0.872 | 0.794 |
| LightGBM | 0.908 | 84.1 | 80.8 | 87.6 | 0.840 | 0.875 | 0.810 |
| 极限梯度提升 | 0.896 | 80.6 | 76.9 | 84.5 | 0.804 | 0.842 | 0.774 |
| [1] |
LEE Y W, CHOI J W, SHIN E H. Machine learning model for predicting malaria using clinical information[J]. Comput Biol Med, 2021, 129:104151.
DOI URL |
| [2] |
GREENER J G, KANDATHIL S M, MOFFAT L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1):40-55.
DOI |
| [3] | ARFAT Y, MITTONE G, ESPOSITO R, et al. Machine learning for cardiology[J]. Minerva Cardiol Angiol, 2022, 70(1):75-91. |
| [4] |
WALTER K. What is acute ischemic stroke?[J]. JAMA, 2022, 327(9):885.
DOI PMID |
| [5] | 中国老年医学学会急诊医学分会, 中华医学会急诊医学分会卒中学组, 中国卒中学会急救医学分会. 急性缺血性脑卒中急诊急救中国专家共识2018版(上)[J]. 心脑血管病防治, 2019, 19(3):201-204. |
| [6] |
CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1):70.
DOI PMID |
| [7] |
MARKUS H S, MICHEL P. Treatment of posterior circulation stroke:acute management and secondary prevention[J]. Int J Stroke, 2022, 17(7):723-732.
DOI URL |
| [8] |
KRIEGER P, MELMED K R, TORRES J, et al. Pre-admission antithrombotic use is associated with 3-month mRS score after thrombectomy for acute ischemic stroke[J]. J Thromb Thrombolysis, 2022, 54(2):350-359.
DOI |
| [9] |
CHATURVEDI P, MEHROTRA V, SAXENA Y, et al. Correlation of serum nitric oxide(NO)with Glasgow Coma Scale(GCS)in acute ischemic stroke patient:a study in north India[J]. Indian J Clin Biochem, 2018, 33(3):322-327.
DOI URL |
| [10] |
JANSA J, POGACNIK T, GOMPERTZ P. An evaluation of the Extended Barthel Index with acute ischemic stroke patients[J]. Neurorehabil Neural Repair, 2004, 18(1):37-41.
DOI URL |
| [11] |
GANAIE M A, TANVEER M, SUGANTHAN P N, et al. Oblique and rotation double random forest[J]. Neural Netw, 2022, 153:496-517.
DOI URL |
| [12] |
WANG R, WANG L, ZHANG J, et al. XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate-to-severe traumatic brain injury[J]. World Neurosurg, 2022, 163:e617-e622.
DOI URL |
| [13] |
YAN J, XU Y, CHENG Q, et al. LightGBM:accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biol, 2021, 22(1):271.
DOI |
| [14] |
ZABOR E C, REDDY C A, TENDULKAR R D, et al. Logistic regression in clinical studies[J]. Int J Radiat Oncol Biol Phys, 2022, 112(2):271-277.
DOI URL |
| [15] | SAINI V, GUADA L, YAVAGAL D R. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20):S6-S16. |
| [16] | 张穿洋, 朱文莉, 李晓冉, 等. 急性脑卒中预后预测模型:机器学习与传统回归模型的比较[J]. 中国CT和MRI杂志, 2023, 21(7):24-26. |
| [17] |
KAZI S A, SIDDIQUI M, MAJID S. Stroke outcome prediction using admission nihss in anterior and posterior circulation stroke[J]. J Ayub Med Coll Abbottabad, 2021, 33(2):274-278.
PMID |
| [18] |
WANG Y, JING J, PAN Y, et al. Distribution and prognosis of acute ischaemic stroke with negative diffusion-weighted imaging[J]. Stroke Vasc Neurol, 2022, 7(6):493-499.
DOI PMID |
| [19] | 刘建模, 罗颢文, 俞鹏飞, 等. 基于机器学习的急性缺血性脑卒中医院感染预测模型建立与评价[J]. 中国感染控制杂志, 2023, 22(2):129-135. |
| [20] | 罗枭, 程义, 何倩, 等. 基于机器学习算法的重症缺血性脑卒中早期死亡预测效果评价[J]. 海军军医大学学报, 2022, 43(12):1365-1371. |
| [21] |
SONG X, LIU X, LIU F, et al. Comparison of machine learning and logistic regression models in predicting acute kidney injury:a systematic review and meta-analysis[J]. Int J Med Inform, 2021, 151:104484.
DOI URL |
| [22] | 陈慧, 郑晓梅, 夏晓, 等. PI3K/Akt信号通路对脐血间充质干细胞减轻缺血性脑损伤和炎症反应的调节作用[J]. 中国免疫学杂志, 2021, 37(2):155-160. |
| [1] | GUAN Chao, HUANG Ying, SONG Yunxiao, ZHOU Ying. Application of a machine learning model based on routine inflammatory markers to distinguish the severity of community-acquired pneumonia [J]. Laboratory Medicine, 2025, 40(7): 680-686. |
| [2] | WANG Xumei, XU Dongqing, GAO Limei, ZHANG Lihua, JIANG Wenli, WANG Weiwei, MA Juan, SHEN Lisong. Construction of a machine learning-based model for predicting the risk of neuroblastoma bone metastasis [J]. Laboratory Medicine, 2025, 40(6): 534-539. |
| [3] | LING Xiaoting, PAN Liqiu, HUANG Yunhua, WEI Yuanyuan, DENG Xiaohui, YE Lihua, LIN Faquan, HUANG Yifang. Establishment of machine learning discriminatory formulas for thalassemia and iron deficiency anemia based on red blood cell morphology and parameters [J]. Laboratory Medicine, 2025, 40(4): 365-371. |
| [4] | KANG Yi, ZHANG Qiaoling, SHI Yanfang, WANG Yujia, CHEN Xiaodan, PENG Youqun. Roles of serum miR-181b and miR-144 expressions in early neurological deterioration in patients with acute ischemic stroke [J]. Laboratory Medicine, 2025, 40(1): 73-78. |
| [5] | HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms [J]. Laboratory Medicine, 2024, 39(7): 668-672. |
| [6] | GU Liangliang, WANG Jianfeng, QIAO Xin, ZHANG Baochao, FU Guohui. Correlation between serum LRG1 level and cognitive impairment and recurrence in patients with acute ischemic stroke [J]. Laboratory Medicine, 2024, 39(5): 443-448. |
| [7] | SHEN Zhan, BIAN Xiaobo, HUANG Ying, WANG Siyang, SHEN Tingting, ZHANG Xian, SONG Yunxiao, XIE Lianhong. Stroke recurrence prediction model based on machine learning algorithms using routine blood test [J]. Laboratory Medicine, 2024, 39(12): 1190-1195. |
| [8] | ZHU Qian, ZHU Lifang, MA Caiyun, YAO Jie. Relation of serum miR-140-5p and PGC-1α mRNA expression with vascular cognitive impairment in acute ischemic stroke patients [J]. Laboratory Medicine, 2023, 38(11): 1069-1074. |
| [9] | LI Jinyi, LI Chunlei, JIA Yonglin, JIA Dongpei. Plasma ADAMTS-7 level and its relationship with prognosis in patients with acute ischemic stroke [J]. Laboratory Medicine, 2021, 36(10): 1033-1038. |
| [10] | WANG Shuang, CHEN Si, FU Yang, MAO Zhigang, JIANG Hong. Role of machine learning in peripheral blood blast intelligent determination [J]. Laboratory Medicine, 2019, 34(12): 1118-1123. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||