Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (4): 309-316.DOI: 10.3969/j.issn.1673-8640.2025.04.001
MA Xiaolu, GUO Lin, LU Renquan()
Received:
2025-02-17
Revised:
2025-03-28
Online:
2025-04-30
Published:
2025-05-08
CLC Number:
MA Xiaolu, GUO Lin, LU Renquan. Clinical value and application prospect of circulating biomarkers in hepatocellular carcinoma patients[J]. Laboratory Medicine, 2025, 40(4): 309-316.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.04.001
[1] | KIM D Y, TOAN B N, TAN C K, et al. Utility of combining PIVKA-Ⅱ and AFP in the surveillance and monitoring of hepatocellular carcinoma in the Asia-Pacific region[J]. Clin Mol Hepatol, 2023, 29(2):277-292. |
[2] |
CHOI J G, KIM G A, HAN S B, et al. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma[J]. Hepatology, 2019, 69(5):1983-1994.
DOI PMID |
[3] | CHEN J G, PARKIN D M, CHEN Q G, et al. Screening for liver cancer:results of a randomised controlled trial in Qidong,China[J]. J Med Screen, 2003, 10(4):204-209. |
[4] | ZHANG B H, YANG B H, TANG Z Y. Randomized controlled trial of screening for hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2004, 130(7):417-422. |
[5] | ATTIA A M, REZAEE-ZAVAREH M S, HWANG S Y, et al. Novel biomarkers for early detection of hepatocellular carcinoma[J]. Diagnostics(Basel), 2024, 14(20):2278. |
[6] | TIAN B W, YAN L J, DING Z N, et al. Early alpha-fetoprotein response predicts prognosis of immune checkpoint inhibitor and targeted therapy for hepatocellular carcinoma:a systematic review with meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2023, 17(1):73-83. |
[7] |
ODA K, IDO A, TAMAI T, et al. Highly sensitive lens culinaris agglutinin-reactive α-fetoprotein is useful for early detection of hepatocellular carcinoma in patients with chronic liver disease[J]. Oncol Rep, 2011, 26(5):1227-1233.
DOI PMID |
[8] |
KAGEBAYASHI C, YAMAGUCHI I, AKINAGA A, et al. Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis[J]. Anal Biochem, 2009, 388(2):306-311.
DOI PMID |
[9] | ZHANG Y S, CHU J H, CUI S X, et al. Des-γ-carboxy prothrombin(DCP)as a potential autologous growth factor for the development of hepatocellular carcinoma[J]. Cell Physiol Biochem, 2014, 34(3):903-915. |
[10] | XING H, ZHENG Y J, HAN J, et al. Protein induced by vitamin K absence or antagonist-Ⅱ versus alpha-fetoprotein in the diagnosis of hepatocellular carcinoma:a systematic review with meta-analysis[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(6):487-495. |
[11] | KAMEL M M, SAAD M F, MAHMOUD A A, et al. Evaluation of serum PIVKA-Ⅱ and MIF as diagnostic markers for HCV/HBV induced hepatocellular carcinoma[J]. Microb Pathog, 2014, 77:31-35. |
[12] | POTE N, CAUCHY F, ALBUQUERQUE M, et al. Performance of PIVKA-Ⅱ for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion[J]. J Hepatol, 2015, 62(4):848-854. |
[13] | SU T H, WU C H, LIU T H, et al. Clinical practice guidelines and real-life practice in hepatocellular carcinoma:a Taiwan perspective[J]. Clin Mol Hepatol, 2023, 29(2):230-241. |
[14] | TEHRANI H A, ZANGI M, FATHI M, et al. GPC-3 in hepatocellular carcinoma;A novel biomarker and molecular target[J]. Exp Cell Res, 2025, 444(2):114391. |
[15] |
HIPPO Y, WATANABE K, WATANABE A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma[J]. Cancer Res, 2004, 64(7):2418-2423.
PMID |
[16] | COUZINET A, SUZUKI T, NAKATSURA T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy[J]. Expert Opin Ther Targets, 2024, 28(10):895-909. |
[17] | TANGKIJVANICH P, CHANMEE T, KOMTONG S, et al. Diagnostic role of serum glypican-3 in differentiating hepatocellular carcinoma from non-malignant chronic liver disease and other liver cancers[J]. J Gastroenterol Hepatol, 2010, 25(1):129-137. |
[18] | DEVAN A R, NAIR B, PRADEEP G K, et al. The role of glypican-3 in hepatocellular carcinoma:insights into diagnosis and therapeutic potential[J]. Eur J Med Res, 2024, 29(1):490. |
[19] | 汤笑禹, 王砚春, 卢仁泉, 等. 血清GPC3水平在原发性肝细胞癌患者辅助诊断中的应用价值[J]. 中华预防医学杂志, 2020, 54(9):998-1002. |
[20] | 张沛茹, 马晓路, 郭林, 等. 血清GPC3水平在原发性肝细胞肝癌复发预测中的应用价值[J]. 中华预防医学杂志, 2023, 57(6):885-890. |
[21] | JIANG D, ZHANG Y, WANG Y, et al. Diagnostic accuracy and prognostic significance of glypican-3 in hepatocellular carcinoma:a systematic review and meta-analysis[J]. Front Oncol, 2022, 12:1012418. |
[22] | DAI M, CHEN X, LIU X, et al. Diagnostic value of the combination of Golgi protein 73 and alpha-fetoprotein in hepatocellular carcinoma:a meta-analysis[J]. PLoS One, 2015, 10(10):e0140067. |
[23] | SHEN Q, FAN J, YANG X R, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma:a large-scale,multicentre study[J]. Lancet Oncol, 2012, 13(8):817-826. |
[24] | KIYOKAWA H, YASUDA H, OIKAWA R, et al. Serum monomeric laminin-γ2 as a novel biomarker for hepatocellular carcinoma[J]. Cancer Sci, 2017, 108(7):1432-1439. |
[25] | ZENG C, STROUP E K, ZHANG Z, et al. Towards precision medicine:advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun(Lond), 2019, 39(1):12. |
[26] | KIRK G D, LESI O A, MENDY M, et al. 249(ser)TP53 mutation in plasma DNA,hepatitis B viral infection,and risk of hepatocellular carcinoma[J]. Oncogene, 2005, 24(38):5858-5867. |
[27] |
ZHANG W L, HE H, ZANG M Y, et al. Genetic features of aflatoxin-associated hepatocellular carcinoma[J]. Gastroenterology, 2017, 153(1):249-262.
DOI PMID |
[28] | BARDOL T, PAGEAUX G P, ASSENAT E, et al. Circulating tumor DNA clinical applications in hepatocellular carcinoma:current trends and future perspectives[J]. Clin Chem, 2024, 70(1):33-48. |
[29] | ZHANG Y J, WU C H, SHEN J, et al. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA[J]. Clin Cancer Res, 2007, 13(8):2378-2384. |
[30] |
SHI X W, SHI B H, LYU A L, et al. Exploring genome-wide DNA methylation profiles altered in kashin-beck disease using infinium human methylation 450 bead chips[J]. Biomed Environ Sci, 2016, 29(7):539-543.
DOI PMID |
[31] |
WEN L, LI J Y, GUO H H, et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients[J]. Cell Res, 2015, 25(11):1250-1264.
DOI PMID |
[32] | ZHAO Y T, ZHAO L, JIN H F, et al. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma[J]. Epigenetics, 2024, 19(1):2299044. |
[33] | XU R H, WEI W, KRAWCZYK M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J]. Nat Mater, 2017, 16(11):1155-1161. |
[34] | KIM D Y, CHO E H, KIN J S, et al. Plasma circulating cell-free DNA in advanced hepatocellular carcinoma patients treated with radiation therapy[J]. In Vivo, 2023, 37(5):2306-2313. |
[35] |
LI W S, ZHANG X, LU X Y, et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers[J]. Cell Res, 2017, 27(10):1243-1257.
DOI PMID |
[36] |
LI X, LIU Y, SALZ T, et al. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver[J]. Genome Res, 2016, 26(12):1730-1741.
PMID |
[37] |
CAI J B, CHEN L, ZHANG Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma[J]. Gut, 2019, 68(12):2195-2205.
DOI PMID |
[38] | SONG C X, YIN S L, MA L, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages[J]. Cell Res, 2017, 27(10):1231-1242. |
[39] | NING C, CAI P, LIU X, et al. A comprehensive evaluation of full-spectrum cell-free RNAs highlights cell-free RNA fragments for early-stage hepatocellular carcinoma detection[J]. EBioMedicine, 2023, 93:104645. |
[40] | BAI J, JIANG P, JI L, et al. Histone modifications of circulating nucleosomes are associated with changes in cell-free DNA fragmentation patterns[J]. Proc Natl Acad Sci U S A, 2024, 121(42):e2404058121. |
[41] |
AN Y Y, ZHAO X, ZHANG Z T, et al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation[J]. Nat Commun, 2023, 14(1):287.
DOI PMID |
[42] |
DENG Z Z, JI Y K, HAN B, et al. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network[J]. Genome Med, 2023, 15(1):93.
DOI PMID |
[43] | CHENG L, SHARPLES R A, SCICLUNA B J, et al. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood[J]. J Extracell Vesicles, 2014, 3:23743. |
[44] |
ZHOU J, YU L, GAO X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Oncol, 2011, 29(36):4781-4788.
DOI PMID |
[45] | BI W, LI X, JIANG Y, et al. Tumor-derived exosomes induce neutrophil infiltration and reprogramming to promote T-cell exhaustion in hepatocellular carcinoma[J]. Theranostics, 2025, 15(7):2852-2869. |
[46] |
JIN Y, WONG Y S, GOH B K P, et al. Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma[J]. Sci Rep, 2019, 9(1):10464.
DOI PMID |
[47] | SHAATH H, VISHNUBALAJI R, ELANGO R, et al. Long non-coding RNA and RNA-binding protein interactions in cancer:experimental and machine learning approaches[J]. Semin Cancer Biol, 2022, 86(Pt 3):325-345. |
[48] | ISMAIL M, FADUL M M, TAHA R, et al. Dynamic role of exosomal long non-coding RNA in liver diseases:pathogenesis and diagnostic aspects[J]. Hepatol Int, 2024, 18(6):1715-1730. |
[49] |
XU X Y, GU J M, DING X G, et al. LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression[J]. Cell Death Dis, 2019, 10(10):752.
DOI PMID |
[50] |
ZENG B, LIN Z W, YE H L, et al. Upregulation of LncDQ is associated with poor prognosis and promotes tumor progression via epigenetic regulation of the EMT pathway in HCC[J]. Cell Physiol Biochem, 2018, 46(3):1122-1133.
DOI PMID |
[51] |
KAMEL M M, MATBOLI M, SALLAM M, et al. Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma[J]. Transl Res, 2016, 168:134-145.
DOI PMID |
[52] | BADOWSKI C, HE B, GARMIRE L X. Blood-derived lncRNAs as biomarkers for cancer diagnosis:the good,the bad and the beauty[J]. NPJ Precis Oncol, 2022, 6(1):40. |
[53] | ZHANG W, WU W, MENG Q, et al. Research progress on long noncoding RNAs and n6-methyladenosine in hepatocellular carcinoma[J]. Front Oncol, 2022, 12:907399. |
[54] |
TAN W, XIAO C, MA M, et al. Role of non-coding RNA in lineage plasticity of prostate cancer[J]. Cancer Gene Ther, 2025, 32(1):1-10.
DOI PMID |
[55] |
ZHANG X, XU Y F, QIAN Z J, et al. CircRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(11):1091.
DOI PMID |
[56] |
LI Z, ZHOU Y, YANG G, et al. Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma[J]. Clin Chim Acta, 2019, 492:37-44.
DOI PMID |
[57] | YU J, DING W B, WANG M C, et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma:a large-scale,multicenter study[J]. Int J Cancer, 2020, 146(6):1754-1763. |
[58] | ZHANG Y, YANG X, ZHUANG Z, et al. The diagnostic value of exosomal circular RNAs in cancer patients:a systematic review and meta-analysis[J]. Cancer Med, 2023, 12(2):1709-1720. |
[59] | WELSH J A, GOBERDHAN D C I, O'DRISCOLL L, et al. Minimal information for studies of extracellular vesicles(MISEV2023):from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2):e12404. |
[60] | CHENG L, ZHANG L M, WANG X X, et al. Extracellular vesicles in the HCC microenvironment:implications for therapy and biomarkers[J]. Pharmacol Res, 2024, 209:107419. |
[61] | WANG H, HOU L, LI A, et al. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma[J]. Biomed Res Int, 2014, 2014:864894. |
[62] | FERRO A, SACCU G, MATTIVI S, et al. Extracellular vesicles as delivery vehicles for non-coding RNAs:potential biomarkers for chronic liver diseases[J]. Biomolecules, 2024, 14(3):277. |
[63] |
SUN N, LEE Y T, ZHANG R Y, et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring[J]. Nat Commun, 2020, 11(1):4489.
DOI PMID |
[64] | KIM S S, BAEK G O, AHN H R, et al. Serum small extracellular vesicle-derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma[J]. Mol Oncol, 2020, 14(10):2646-2659. |
[65] | SUN N, ZHANG C, LEE Y T, et al. HCC EV ECG score:an extracellular vesicle-based protein assay for detection of early-stage hepatocellular carcinoma[J]. Hepatology, 2023, 77(3):774-788. |
[66] |
QU Z, WU J H, WU J Y, et al. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis[J]. Oncotarget, 2017, 8(46):80666-80678.
DOI PMID |
[67] |
SHI M, JIANG Y, YANG L, et al. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma[J]. J Cell Biochem, 2018, 119(6):4711-4716.
DOI PMID |
[68] |
LEE Y R, KIM G, TAK W Y, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma[J]. Int J Cancer, 2019, 144(6):1444-1452.
DOI PMID |
[69] |
WANG G Y, LIU W, ZOU Y, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway[J]. EBioMedicine, 2019, 40:432-445.
DOI PMID |
[70] | ZHANG P F, GAO C, HUANG X Y, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1):110. |
[71] | CHAN Y T, ZHANG C, WU J, et al. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma[J]. Mol Cancer, 2024, 23(1):189. |
[72] |
WENT P T, LUGLI A, MEIER S, et al. Frequent EpCam protein expression in human carcinomas[J]. Hum Pathol, 2004, 35(1):122-128.
DOI PMID |
[73] |
ZHU L, LIN H B, WAN S, et al. Efficient isolation and phenotypic profiling of circulating hepatocellular carcinoma cells via a combinatorial-antibody-functionalized microfluidic synergetic-chip[J]. Anal Chem, 2020, 92(22):15229-15235.
DOI PMID |
[74] |
WANG Z, LUO L, CHENG Y, et al. Correlation between postoperative early recurrence of hepatocellular carcinoma and mesenchymal circulating tumor cells in peripheral blood[J]. J Gastrointest Surg, 2018, 22(4):633-639.
DOI PMID |
[75] | GUO W, SUN Y F, SHEN M N, et al. Circulating tumor cells with stem-like phenotypes for diagnosis,prognosis,and therapeutic response evaluation in hepatocellular carcinoma[J]. Clin Cancer Res, 2018, 24(9):2203-2213. |
[76] | YU J J, LI Y N, SHU C, et al. Prognostic value of preoperative circulating tumor cells for hepatocellular carcinoma with portal vein tumor thrombosis:a propensity score analysis[J]. J Cancer Res Clin Oncol, 2023, 149(11):8981-8991. |
[77] | LEE Y T, SUN N, KIN M Y, et al. Circulating tumor cell-based messenger RNA scoring system for prognostication of hepatocellular carcinoma:translating tissue-based messenger RNA profiling into a noninvasive setting[J]. Liver Transpl, 2022, 28(2):200-214. |
[78] | DOMINGUEZ D A, WONG P, MELSTROM L G. Existing and emerging biomarkers in hepatocellular carcinoma:relevance in staging,determination of minimal residual disease,and monitoring treatment response:a narrative review[J]. Hepatobiliary Surg Nutr, 2024, 13(1):39-55. |
[1] | TIAN Ze, LIU Hongrui, SI Wenzhe. Research progress of exosomal miRNA as biomarkers of hepatocellular carcinoma [J]. Laboratory Medicine, 2025, 40(4): 317-323. |
[2] | SUN Haiqing, LIU Ning, LOU Jinli, YU Yanhua. Clinical role of STIP1 and AFP-L3 combined determination in diagnosing HCC [J]. Laboratory Medicine, 2025, 40(4): 324-330. |
[3] | ZHU Jing, ZHANG Rulin, WU Jun. Expressions of CCNB1,PTTG1 and CBX3 in hepatocellular carcinoma and their roles in prognostic assessment [J]. Laboratory Medicine, 2025, 40(4): 331-337. |
[4] | WANG Xiaolong, CHEN Yuanbin. Relationship between serum cell division cyclin 42 and clinicopathological characteristics and prognosis of AFP-negative hepatocellular carcinoma patients [J]. Laboratory Medicine, 2025, 40(3): 259-263. |
[5] | LI Bo, XIA Yongquan, SHEN Ping, XIA Mao, ZENG Jiawei. Mechanisms of cancer-associated thrombosis [J]. Laboratory Medicine, 2025, 40(2): 192-196. |
[6] | LIU Yang, HE Chengshan, JIANG Xiudi, LU Zhicheng. HBV PreS/S region gene mutation inducing hepatocyte endoplasmic reticulum stress causing hepatocellular carcinoma [J]. Laboratory Medicine, 2024, 39(12): 1229-1233. |
[7] | ZHOU Yunlan, SHEN Lisong. Clinical application and challenges of liquid biopsy biomarkers in non-small cell lung cancer [J]. Laboratory Medicine, 2023, 38(9): 807-811. |
[8] | Clinical Laboratory Society of Chinese Association for Rehabilitation Medicine , Molecular Diagnostics Society of Shanghai Medical Association , Tumor Immunology Branch of Shanghai Society for Immunology , Yueyang Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University of Traditional Chinese Medicine , Shanghai Center for Clinical Laboratory, Clinical Laboratory Society of Chinese Association of Integrative Medicine , Clinical Laboratory Society of Shanghai Anticancer Association , Tumor Markers Society of Shanghai Anticancer Association . Expert consensus on the clinical application of AFP,AFP-L3% and DCP using GALAD and GALAD-like models in hepatocellular carcinoma [J]. Laboratory Medicine, 2023, 38(7): 607-623. |
[9] | CHEN Wenju, ZHOU Yong, XU Jiajia, WANG Pan. Role of serum exosomal miR-23b-3p and miR-4429 in patients with hepatocellular carcinoma [J]. Laboratory Medicine, 2023, 38(7): 624-628. |
[10] | GAO Feng. Clinical application of novel tumor biomarkers:prospects and challenges [J]. Laboratory Medicine, 2023, 38(4): 303-306. |
[11] | WU Jiong, HU Jiahua, SHI Meifang, LIU Tao, DAI Jie, LU Xinyi, ZOU Zheng. Research progress of biomarkers of prostate cancer [J]. Laboratory Medicine, 2023, 38(2): 190-195. |
[12] | WANG Rui, LI Zhaoyan, ZHAO Aiguang. Application of circulating tumor DNA detection in the diagnosis and treatment of gastric cancer [J]. Laboratory Medicine, 2022, 37(9): 877-881. |
[13] | LIU Xingqiang, NING Lifen, LI Lin, CHEN Zhongcheng. Correlation of lung cancer clinicopathological characteristics with FR+-CTC,ANXA2 and ProGRP [J]. Laboratory Medicine, 2022, 37(8): 735-740. |
[14] | YU Qi, SUN Yi, WANG Qiongli, CAI Yiting, LI Li. Application of morphological analysis of circulating tumor cells in clinical examination [J]. Laboratory Medicine, 2022, 37(3): 264-269. |
[15] | MENG Jun, WANG Junqing, FEI Xiaochun, GU Zhidong. Establishment and validation of a plasma exosome-derived circular RNA model for HCC diagnosis [J]. Laboratory Medicine, 2022, 37(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||