Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (7): 680-686.
Previous Articles Next Articles
GUAN Chao1, HUANG Ying2, SONG Yunxiao3, ZHOU Ying2()
Received:
2024-12-11
Revised:
2025-04-27
Online:
2025-07-30
Published:
2025-07-28
CLC Number:
GUAN Chao, HUANG Ying, SONG Yunxiao, ZHOU Ying. Application of a machine learning model based on routine inflammatory markers to distinguish the severity of community-acquired pneumonia[J]. Laboratory Medicine, 2025, 40(7): 680-686.
组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||||
轻症组 | 1 363 | 67.35±11.45 | 415 | 948 | 502 | 260 | 368 | 143 | 75 |
重症组 | 1 320 | 67.29±12.56 | 415 | 905 | 478 | 272 | 358 | 158 | 79 |
统计值 | 0.129 | 1.811 | 0.106 | 2.091 | 0.007 | 2.920 | 0.077 | ||
P值 | 0.538 | 0.178 | 0.745 | 0.148 | 0.936 | 0.087 | 0.781 | ||
组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
轻症组 | 123 | 145 | 82 | 20 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
重症组 | 115 | 140 | 92 | 18 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
统计值 | 0.823 | 0.165 | 1.372 | 0.234 | 20.910 | 3.460 | 17.580 | 13.120 | |
P值 | 0.364 | 0.685 | 0.242 | 0.629 | <0.001 | <0.001 | <0.001 | <0.001 | |
组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
轻症组 | 4.10±1.97 | 114.24±27.37 | 2.21±0.85 | 5.24±1.37 | 469.32±115.38 | 5.02±1.46 | 0.39±0.13 | ||
重症组 | 7.71±4.81 | 188.32±23.07 | 6.48±1.63 | 2.32±0.72 | 1 459.74±471.26 | 12.46±3.21 | 0.47±0.16 | ||
统计值 | 25.410 | 12.110 | 15.450 | 75.870 | 74.050 | 76.700 | 14.190 | ||
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||||
轻症组 | 1 363 | 67.35±11.45 | 415 | 948 | 502 | 260 | 368 | 143 | 75 |
重症组 | 1 320 | 67.29±12.56 | 415 | 905 | 478 | 272 | 358 | 158 | 79 |
统计值 | 0.129 | 1.811 | 0.106 | 2.091 | 0.007 | 2.920 | 0.077 | ||
P值 | 0.538 | 0.178 | 0.745 | 0.148 | 0.936 | 0.087 | 0.781 | ||
组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
轻症组 | 123 | 145 | 82 | 20 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
重症组 | 115 | 140 | 92 | 18 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
统计值 | 0.823 | 0.165 | 1.372 | 0.234 | 20.910 | 3.460 | 17.580 | 13.120 | |
P值 | 0.364 | 0.685 | 0.242 | 0.629 | <0.001 | <0.001 | <0.001 | <0.001 | |
组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
轻症组 | 4.10±1.97 | 114.24±27.37 | 2.21±0.85 | 5.24±1.37 | 469.32±115.38 | 5.02±1.46 | 0.39±0.13 | ||
重症组 | 7.71±4.81 | 188.32±23.07 | 6.48±1.63 | 2.32±0.72 | 1 459.74±471.26 | 12.46±3.21 | 0.47±0.16 | ||
统计值 | 25.410 | 12.110 | 15.450 | 75.870 | 74.050 | 76.700 | 14.190 | ||
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||||
轻症组 | 563 | 63.2±12.5 | 166 | 397 | 212 | 113 | 145 | 56 | 25 |
重症组 | 428 | 65.1±11.8 | 126 | 302 | 160 | 82 | 105 | 49 | 21 |
统计值 | -1.615 | 0.532 | 0.000 4 | 0.023 | 0.749 | 0.817 | 1.672 | ||
P值 | 0.106 | 0.466 | 0.985 | 0.880 | 0.388 | 0.367 | 0.197 | ||
组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
轻症组 | 47 | 37 | 28 | 6 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
重症组 | 34 | 40 | 26 | 5 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
统计值 | 0 | 0.533 | 0.350 | 0.367 | 15.327 | 2.326 | 12.573 | 9.124 | |
P值 | 1 | 0.466 | 0.554 | 0.546 | <0.001 | 0.020 | <0.001 | <0.001 | |
组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
轻症组 | 4.10±1.97 | 114.50±22.45 | 2.20±0.56 | 5.03±2.12 | 469.6±89.21 | 5.09±1.44 | 0.37±0.12 | ||
重症组 | 7.71±4.81 | 188.40±36.88 | 6.48±1.89 | 2.20±0.96 | 1 452.5±322.25 | 12.80±3.65 | 0.46±0.15 | ||
统计值 | 17.235 | 43.215 | 52.367 | 28.941 | 7.892 | 41.342 | 10.184 | ||
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | ||||||||
轻症组 | 563 | 63.2±12.5 | 166 | 397 | 212 | 113 | 145 | 56 | 25 |
重症组 | 428 | 65.1±11.8 | 126 | 302 | 160 | 82 | 105 | 49 | 21 |
统计值 | -1.615 | 0.532 | 0.000 4 | 0.023 | 0.749 | 0.817 | 1.672 | ||
P值 | 0.106 | 0.466 | 0.985 | 0.880 | 0.388 | 0.367 | 0.197 | ||
组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
轻症组 | 47 | 37 | 28 | 6 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
重症组 | 34 | 40 | 26 | 5 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
统计值 | 0 | 0.533 | 0.350 | 0.367 | 15.327 | 2.326 | 12.573 | 9.124 | |
P值 | 1 | 0.466 | 0.554 | 0.546 | <0.001 | 0.020 | <0.001 | <0.001 | |
组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
轻症组 | 4.10±1.97 | 114.50±22.45 | 2.20±0.56 | 5.03±2.12 | 469.6±89.21 | 5.09±1.44 | 0.37±0.12 | ||
重症组 | 7.71±4.81 | 188.40±36.88 | 6.48±1.89 | 2.20±0.96 | 1 452.5±322.25 | 12.80±3.65 | 0.46±0.15 | ||
统计值 | 17.235 | 43.215 | 52.367 | 28.941 | 7.892 | 41.342 | 10.184 | ||
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
模型 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
---|---|---|---|---|---|---|---|
DT | 0.82 | 82 | 85 | 0.84 | 0.83 | 83 | 0.83 |
KNN | 0.91 | 81 | 90 | 0.89 | 0.83 | 86 | 0.85 |
RF | 0.93 | 84 | 90 | 0.89 | 0.86 | 87 | 0.87 |
XGBoost | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
SVM | 0.93 | 83 | 90 | 0.88 | 0.84 | 86 | 0.86 |
LR | 0.93 | 78 | 92 | 0.90 | 0.81 | 85 | 0.83 |
模型 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
---|---|---|---|---|---|---|---|
DT | 0.82 | 82 | 85 | 0.84 | 0.83 | 83 | 0.83 |
KNN | 0.91 | 81 | 90 | 0.89 | 0.83 | 86 | 0.85 |
RF | 0.93 | 84 | 90 | 0.89 | 0.86 | 87 | 0.87 |
XGBoost | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
SVM | 0.93 | 83 | 90 | 0.88 | 0.84 | 86 | 0.86 |
LR | 0.93 | 78 | 92 | 0.90 | 0.81 | 85 | 0.83 |
5×交叉验证 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
---|---|---|---|---|---|---|---|
Fold 1 | 0.96 | 91 | 89 | 0.89 | 0.91 | 90 | 0.90 |
Fold 2 | 0.95 | 86 | 90 | 0.90 | 0.87 | 88 | 0.88 |
Fold 3 | 0.95 | 88 | 88 | 0.87 | 0.88 | 88 | 0.88 |
Fold 4 | 0.95 | 90 | 91 | 0.91 | 0.91 | 91 | 0.90 |
Fold 5 | 0.95 | 84 | 89 | 0.88 | 0.85 | 86 | 0.86 |
平均 | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
5×交叉验证 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
---|---|---|---|---|---|---|---|
Fold 1 | 0.96 | 91 | 89 | 0.89 | 0.91 | 90 | 0.90 |
Fold 2 | 0.95 | 86 | 90 | 0.90 | 0.87 | 88 | 0.88 |
Fold 3 | 0.95 | 88 | 88 | 0.87 | 0.88 | 88 | 0.88 |
Fold 4 | 0.95 | 90 | 91 | 0.91 | 0.91 | 91 | 0.90 |
Fold 5 | 0.95 | 84 | 89 | 0.88 | 0.85 | 86 | 0.86 |
平均 | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
[1] |
ALIBERTI S, DELA CRUZ C S, AMATI F, et al. Community-acquired pneumonia[J]. Lancet, 2021, 398(10303):906-919.
DOI PMID |
[2] | VAUGHN V M, DICKSON R P, HOROWITZ J K, et al. Community-acquired pneumonia:a review[J]. JAMA, 2024, 332(15):1282-1295. |
[3] |
EWIG S, BIRKNER N, STRAUSS R, et al. New perspectives on community-acquired pneumonia in 388 406 patients. Results from a nationwide mandatory performance measurement programme in healthcare quality[J]. Thorax, 2009, 64(12):1062-1069.
DOI PMID |
[4] |
CHALMERS J D, SINGANAYAGAM A, AKRAM A R, et al. Severity assessment tools for predicting mortality in hospitalised patients with community-acquired pneumonia. Systematic review and meta-analysis[J]. Thorax, 2010, 65(10):878-883.
DOI PMID |
[5] | ZHU F M, XU J, HE Q Y, et al. Association of serum interleukin-2 with severity and prognosis in hospitalized patients with community-acquired pneumonia:a prospective cohort study[J]. Intern Emerg Med, 2024, 19(7):1929-1939. |
[6] | WEN X, LENG P, WANG J, et al. Clinlabomics:leveraging clinical laboratory data by data mining strategies[J]. BMC Bioinformatics, 2022, 23(1):387. |
[7] | ELLIS H L, WAN B, YEUNG M, et al. Complementing chronic frailty assessment at hospital admission with an electronic frailty index(FI-Laboratory)comprising routine blood test results[J]. CMAJ, 2020, 192(1):E3-E8. |
[8] | OSMAN A D, HOWELL J, YEOH M, et al. Benefits of emergency department routine blood test performance on patients whose allocated triage category is not time critical:a retrospective study[J]. BMC Health Serv Res, 2024, 24(1):1252. |
[9] | METLAY J P, WATERER G W, LONG A C, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America[J]. Am J Respir Crit Care Med, 2019, 200(7):e45-e67. |
[10] | TOGUN T, HOGGART C J, AGBLA S C, et al. A three-marker protein biosignature distinguishes tuberculosis from other respiratory diseases in Gambian children[J]. EBioMedicine, 2020,58:102909. |
[11] | WANG X, JIAO J, WEI R, et al. A new method to predict hospital mortality in severe community acquired pneumonia[J]. Eur J Intern Med, 2017,40:56-63. |
[12] | LIU J X, BAI J S, ZHANG Q, et al. A new prediction model for prolonged hospitalization in adult community-acquired pneumonia(CAP)patients[J]. Clin Lab, 2022, 68(11):2271-2277. |
[13] | ZHENG X, HUANG Z, WANG D, et al. A new haematological model for the diagnosis and prognosis of severe community-acquired pneumonia:a single-center retrospective study[J]. Ann Transl Med, 2022, 10(16):881. |
[14] |
曾瑞璜, 王小林, 曾叶, 等. 基于数据挖掘模型分析CA125、NLR、PLR、hs-CRP联合检测对社区获得性肺炎伴胸腔积液的临床意义[J]. 检验医学, 2020, 35(11):1103-1107.
DOI |
[15] | WITTERMANS E, VAN DE GARDE E M, VOORN G P, et al. Neutrophil count,lymphocyte count and neutrophil-to-lymphocyte ratio in relation to response to adjunctive dexamethasone treatment in community-acquired pneumonia[J]. Eur J Intern Med, 2022,96:102-108. |
[16] |
孙康德, 虞中敏, 严育忠. 不同感染指标在细菌性血流感染早期诊断和预后评估中的价值[J]. 检验医学, 2024, 39(3):222-226.
DOI |
[17] |
朱红, 朱宇清, 顾国宝. 正五聚体蛋白3在社区获得性肺炎临床诊断中的意义[J]. 检验医学, 2020, 35(5):424-427.
DOI |
[18] | 李晓烂, 何永鸿, 邓俊, 等. PCT、NLR、CAR对社区获得性重症肺炎患者短期预后的预测价值[J]. 重庆医学, 2025, 54(1):86-90. |
[1] | JIN Weifeng, LI Dan, WANG Mengxia, PAN Nuoxuan, ZHANG Hong, LIN Ping. A risk prediction model for depressive disorders in children based on serum amino acids and cytokines [J]. Laboratory Medicine, 2025, 40(7): 666-672. |
[2] | ZHOU Rui, YANG Aiping, ZHANG Guohua, YANG Danping, WANG Hong. Combined determination of inflammatory markers in differential diagnosis of pathogens in acute respiratory tract infections [J]. Laboratory Medicine, 2025, 40(7): 687-692. |
[3] | WANG Xumei, XU Dongqing, GAO Limei, ZHANG Lihua, JIANG Wenli, WANG Weiwei, MA Juan, SHEN Lisong. Construction of a machine learning-based model for predicting the risk of neuroblastoma bone metastasis [J]. Laboratory Medicine, 2025, 40(6): 534-539. |
[4] | GONG Xiaolin, DENG Kun, WU Jun, REN Chuanli, XU Songxiao, LI Shengjie, LI Bo, YANG Dagan, SHEN Han, ZHANG Yi, CHEN Ming, WU Yongkang, LUO Huaichao, YUAN Xu, XU Huaguo, GONG Qian, LI Xin, GUAN Ming. AI technology reshaping laboratory medicine from automation to intelligent decision-making [J]. Laboratory Medicine, 2025, 40(5): 413-420. |
[5] | LING Xiaoting, PAN Liqiu, HUANG Yunhua, WEI Yuanyuan, DENG Xiaohui, YE Lihua, LIN Faquan, HUANG Yifang. Establishment of machine learning discriminatory formulas for thalassemia and iron deficiency anemia based on red blood cell morphology and parameters [J]. Laboratory Medicine, 2025, 40(4): 365-371. |
[6] | WANG Qinglei, HUANG Xiansheng, FU Shan, LI Shucheng, WANG Hong. Correlation of serum TET2,ox-LDL,CLU with ventricular remodeling and major adverse cardiovascular events in patients with acute myocardial infarction [J]. Laboratory Medicine, 2025, 40(1): 49-53. |
[7] | ZHAI Yanan, DU Yunguang, WANG Min, GUO Qingsheng, LI Qian. Correlation between serum miR-125a expression and airway remodeling in children with bronchial asthma [J]. Laboratory Medicine, 2024, 39(9): 847-852. |
[8] | HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms [J]. Laboratory Medicine, 2024, 39(7): 668-672. |
[9] | WANG Xuexing, CHEN Chunmei, HE Yuan, CHU Jie, WEI Chunmei. Roles of thromboelastography and coagulation index in predicting venous thromboembolism in patients with tumors [J]. Laboratory Medicine, 2024, 39(5): 491-496. |
[10] | ZOU Chen, XU Runhao, DING Yi, ZHANG Jie, WENG Wenhao, WANG Zhenhua, CAO Yun. Colorectal cancer screening model based on ProteomeXchange database [J]. Laboratory Medicine, 2024, 39(12): 1181-1189. |
[11] | SHEN Zhan, BIAN Xiaobo, HUANG Ying, WANG Siyang, SHEN Tingting, ZHANG Xian, SONG Yunxiao, XIE Lianhong. Stroke recurrence prediction model based on machine learning algorithms using routine blood test [J]. Laboratory Medicine, 2024, 39(12): 1190-1195. |
[12] | LIU Ru, ZHANG Feifei, WANG Yu, LI Xin. Relationship between serum miR-9-5p,miR-185-5p expressions and cardiac function and ventricular remodeling in patients with ischemic heart failure [J]. Laboratory Medicine, 2024, 39(11): 1060-1065. |
[13] | LEI Ming, ZHAI Li, WEI Ying, LIN Yichen, GUO Mengyue. Application of nomogram model based on clinical characteristics and serum tumor markers in differential diagnosis of benign and malignant lung lesions [J]. Laboratory Medicine, 2024, 39(10): 956-962. |
[14] | QIN Zehui, CHEN Qiuyu, LIANG Fengrui, SONG Yuqi, YE Liping, LIU Xiangtian, TIAN Xinghan. Construction of prognostic decision tree model of Staphylococcus aureus bloodstream infection in intensive care unit based on MIMIC-Ⅳ database data [J]. Laboratory Medicine, 2024, 39(10): 999-1004. |
[15] | ZHANG Yang, ZHANG Dehe, TANG Shiyue, ZHANG Jun, WANG Jianming, CHEN Ling. Predictive value of soluble CD163 combined with Charlson index for esophageal variceal bleeding in patients with liver cirrhosis [J]. Laboratory Medicine, 2024, 39(1): 19-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||