Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (7): 680-686.
Previous Articles Next Articles
GUAN Chao1, HUANG Ying2, SONG Yunxiao3, ZHOU Ying2(
)
Received:2024-12-11
Revised:2025-04-27
Online:2025-07-30
Published:2025-07-28
CLC Number:
GUAN Chao, HUANG Ying, SONG Yunxiao, ZHOU Ying. Application of a machine learning model based on routine inflammatory markers to distinguish the severity of community-acquired pneumonia[J]. Laboratory Medicine, 2025, 40(7): 680-686.
| 组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
|---|---|---|---|---|---|---|---|---|---|
| 男/例 | 女/例 | ||||||||
| 轻症组 | 1 363 | 67.35±11.45 | 415 | 948 | 502 | 260 | 368 | 143 | 75 |
| 重症组 | 1 320 | 67.29±12.56 | 415 | 905 | 478 | 272 | 358 | 158 | 79 |
| 统计值 | 0.129 | 1.811 | 0.106 | 2.091 | 0.007 | 2.920 | 0.077 | ||
| P值 | 0.538 | 0.178 | 0.745 | 0.148 | 0.936 | 0.087 | 0.781 | ||
| 组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
| 轻症组 | 123 | 145 | 82 | 20 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
| 重症组 | 115 | 140 | 92 | 18 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
| 统计值 | 0.823 | 0.165 | 1.372 | 0.234 | 20.910 | 3.460 | 17.580 | 13.120 | |
| P值 | 0.364 | 0.685 | 0.242 | 0.629 | <0.001 | <0.001 | <0.001 | <0.001 | |
| 组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
| 轻症组 | 4.10±1.97 | 114.24±27.37 | 2.21±0.85 | 5.24±1.37 | 469.32±115.38 | 5.02±1.46 | 0.39±0.13 | ||
| 重症组 | 7.71±4.81 | 188.32±23.07 | 6.48±1.63 | 2.32±0.72 | 1 459.74±471.26 | 12.46±3.21 | 0.47±0.16 | ||
| 统计值 | 25.410 | 12.110 | 15.450 | 75.870 | 74.050 | 76.700 | 14.190 | ||
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| 组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
|---|---|---|---|---|---|---|---|---|---|
| 男/例 | 女/例 | ||||||||
| 轻症组 | 1 363 | 67.35±11.45 | 415 | 948 | 502 | 260 | 368 | 143 | 75 |
| 重症组 | 1 320 | 67.29±12.56 | 415 | 905 | 478 | 272 | 358 | 158 | 79 |
| 统计值 | 0.129 | 1.811 | 0.106 | 2.091 | 0.007 | 2.920 | 0.077 | ||
| P值 | 0.538 | 0.178 | 0.745 | 0.148 | 0.936 | 0.087 | 0.781 | ||
| 组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
| 轻症组 | 123 | 145 | 82 | 20 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
| 重症组 | 115 | 140 | 92 | 18 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
| 统计值 | 0.823 | 0.165 | 1.372 | 0.234 | 20.910 | 3.460 | 17.580 | 13.120 | |
| P值 | 0.364 | 0.685 | 0.242 | 0.629 | <0.001 | <0.001 | <0.001 | <0.001 | |
| 组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
| 轻症组 | 4.10±1.97 | 114.24±27.37 | 2.21±0.85 | 5.24±1.37 | 469.32±115.38 | 5.02±1.46 | 0.39±0.13 | ||
| 重症组 | 7.71±4.81 | 188.32±23.07 | 6.48±1.63 | 2.32±0.72 | 1 459.74±471.26 | 12.46±3.21 | 0.47±0.16 | ||
| 统计值 | 25.410 | 12.110 | 15.450 | 75.870 | 74.050 | 76.700 | 14.190 | ||
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| 组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
|---|---|---|---|---|---|---|---|---|---|
| 男/例 | 女/例 | ||||||||
| 轻症组 | 563 | 63.2±12.5 | 166 | 397 | 212 | 113 | 145 | 56 | 25 |
| 重症组 | 428 | 65.1±11.8 | 126 | 302 | 160 | 82 | 105 | 49 | 21 |
| 统计值 | -1.615 | 0.532 | 0.000 4 | 0.023 | 0.749 | 0.817 | 1.672 | ||
| P值 | 0.106 | 0.466 | 0.985 | 0.880 | 0.388 | 0.367 | 0.197 | ||
| 组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
| 轻症组 | 47 | 37 | 28 | 6 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
| 重症组 | 34 | 40 | 26 | 5 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
| 统计值 | 0 | 0.533 | 0.350 | 0.367 | 15.327 | 2.326 | 12.573 | 9.124 | |
| P值 | 1 | 0.466 | 0.554 | 0.546 | <0.001 | 0.020 | <0.001 | <0.001 | |
| 组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
| 轻症组 | 4.10±1.97 | 114.50±22.45 | 2.20±0.56 | 5.03±2.12 | 469.6±89.21 | 5.09±1.44 | 0.37±0.12 | ||
| 重症组 | 7.71±4.81 | 188.40±36.88 | 6.48±1.89 | 2.20±0.96 | 1 452.5±322.25 | 12.80±3.65 | 0.46±0.15 | ||
| 统计值 | 17.235 | 43.215 | 52.367 | 28.941 | 7.892 | 41.342 | 10.184 | ||
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| 组别 | 例数 | 年龄/岁 | 性别 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | 心力衰竭史/例 | |
|---|---|---|---|---|---|---|---|---|---|
| 男/例 | 女/例 | ||||||||
| 轻症组 | 563 | 63.2±12.5 | 166 | 397 | 212 | 113 | 145 | 56 | 25 |
| 重症组 | 428 | 65.1±11.8 | 126 | 302 | 160 | 82 | 105 | 49 | 21 |
| 统计值 | -1.615 | 0.532 | 0.000 4 | 0.023 | 0.749 | 0.817 | 1.672 | ||
| P值 | 0.106 | 0.466 | 0.985 | 0.880 | 0.388 | 0.367 | 0.197 | ||
| 组别 | 肝脏疾病 史/例 | 肾脏疾病 史/例 | 脑血管疾病史/例 | 神经系统疾病史/例 | WBC计数/(×1012L-1) | PLT计数/(×109L-1) | LYMPH#/(×109L-1) | MO#/ (×109L-1) | |
| 轻症组 | 47 | 37 | 28 | 6 | 6.49±2.19 | 213.02±58.37 | 1.86±0.79 | 0.37±0.14 | |
| 重症组 | 34 | 40 | 26 | 5 | 9.62±5.00 | 224.19±101.99 | 1.19±1.12 | 0.54±0.45 | |
| 统计值 | 0 | 0.533 | 0.350 | 0.367 | 15.327 | 2.326 | 12.573 | 9.124 | |
| P值 | 1 | 0.466 | 0.554 | 0.546 | <0.001 | 0.020 | <0.001 | <0.001 | |
| 组别 | NEUT#/ (×109L-1) | PLR | NLR | LMR | SII | CRP/(mg·L-1) | PCT/(ng·L-1) | ||
| 轻症组 | 4.10±1.97 | 114.50±22.45 | 2.20±0.56 | 5.03±2.12 | 469.6±89.21 | 5.09±1.44 | 0.37±0.12 | ||
| 重症组 | 7.71±4.81 | 188.40±36.88 | 6.48±1.89 | 2.20±0.96 | 1 452.5±322.25 | 12.80±3.65 | 0.46±0.15 | ||
| 统计值 | 17.235 | 43.215 | 52.367 | 28.941 | 7.892 | 41.342 | 10.184 | ||
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| 模型 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
|---|---|---|---|---|---|---|---|
| DT | 0.82 | 82 | 85 | 0.84 | 0.83 | 83 | 0.83 |
| KNN | 0.91 | 81 | 90 | 0.89 | 0.83 | 86 | 0.85 |
| RF | 0.93 | 84 | 90 | 0.89 | 0.86 | 87 | 0.87 |
| XGBoost | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
| SVM | 0.93 | 83 | 90 | 0.88 | 0.84 | 86 | 0.86 |
| LR | 0.93 | 78 | 92 | 0.90 | 0.81 | 85 | 0.83 |
| 模型 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
|---|---|---|---|---|---|---|---|
| DT | 0.82 | 82 | 85 | 0.84 | 0.83 | 83 | 0.83 |
| KNN | 0.91 | 81 | 90 | 0.89 | 0.83 | 86 | 0.85 |
| RF | 0.93 | 84 | 90 | 0.89 | 0.86 | 87 | 0.87 |
| XGBoost | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
| SVM | 0.93 | 83 | 90 | 0.88 | 0.84 | 86 | 0.86 |
| LR | 0.93 | 78 | 92 | 0.90 | 0.81 | 85 | 0.83 |
| 5×交叉验证 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
|---|---|---|---|---|---|---|---|
| Fold 1 | 0.96 | 91 | 89 | 0.89 | 0.91 | 90 | 0.90 |
| Fold 2 | 0.95 | 86 | 90 | 0.90 | 0.87 | 88 | 0.88 |
| Fold 3 | 0.95 | 88 | 88 | 0.87 | 0.88 | 88 | 0.88 |
| Fold 4 | 0.95 | 90 | 91 | 0.91 | 0.91 | 91 | 0.90 |
| Fold 5 | 0.95 | 84 | 89 | 0.88 | 0.85 | 86 | 0.86 |
| 平均 | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
| 5×交叉验证 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确率/% | F1值 |
|---|---|---|---|---|---|---|---|
| Fold 1 | 0.96 | 91 | 89 | 0.89 | 0.91 | 90 | 0.90 |
| Fold 2 | 0.95 | 86 | 90 | 0.90 | 0.87 | 88 | 0.88 |
| Fold 3 | 0.95 | 88 | 88 | 0.87 | 0.88 | 88 | 0.88 |
| Fold 4 | 0.95 | 90 | 91 | 0.91 | 0.91 | 91 | 0.90 |
| Fold 5 | 0.95 | 84 | 89 | 0.88 | 0.85 | 86 | 0.86 |
| 平均 | 0.95 | 88 | 89 | 0.89 | 0.88 | 89 | 0.88 |
| [1] |
ALIBERTI S, DELA CRUZ C S, AMATI F, et al. Community-acquired pneumonia[J]. Lancet, 2021, 398(10303):906-919.
DOI PMID |
| [2] | VAUGHN V M, DICKSON R P, HOROWITZ J K, et al. Community-acquired pneumonia:a review[J]. JAMA, 2024, 332(15):1282-1295. |
| [3] |
EWIG S, BIRKNER N, STRAUSS R, et al. New perspectives on community-acquired pneumonia in 388 406 patients. Results from a nationwide mandatory performance measurement programme in healthcare quality[J]. Thorax, 2009, 64(12):1062-1069.
DOI PMID |
| [4] |
CHALMERS J D, SINGANAYAGAM A, AKRAM A R, et al. Severity assessment tools for predicting mortality in hospitalised patients with community-acquired pneumonia. Systematic review and meta-analysis[J]. Thorax, 2010, 65(10):878-883.
DOI PMID |
| [5] | ZHU F M, XU J, HE Q Y, et al. Association of serum interleukin-2 with severity and prognosis in hospitalized patients with community-acquired pneumonia:a prospective cohort study[J]. Intern Emerg Med, 2024, 19(7):1929-1939. |
| [6] | WEN X, LENG P, WANG J, et al. Clinlabomics:leveraging clinical laboratory data by data mining strategies[J]. BMC Bioinformatics, 2022, 23(1):387. |
| [7] | ELLIS H L, WAN B, YEUNG M, et al. Complementing chronic frailty assessment at hospital admission with an electronic frailty index(FI-Laboratory)comprising routine blood test results[J]. CMAJ, 2020, 192(1):E3-E8. |
| [8] | OSMAN A D, HOWELL J, YEOH M, et al. Benefits of emergency department routine blood test performance on patients whose allocated triage category is not time critical:a retrospective study[J]. BMC Health Serv Res, 2024, 24(1):1252. |
| [9] | METLAY J P, WATERER G W, LONG A C, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America[J]. Am J Respir Crit Care Med, 2019, 200(7):e45-e67. |
| [10] | TOGUN T, HOGGART C J, AGBLA S C, et al. A three-marker protein biosignature distinguishes tuberculosis from other respiratory diseases in Gambian children[J]. EBioMedicine, 2020,58:102909. |
| [11] | WANG X, JIAO J, WEI R, et al. A new method to predict hospital mortality in severe community acquired pneumonia[J]. Eur J Intern Med, 2017,40:56-63. |
| [12] | LIU J X, BAI J S, ZHANG Q, et al. A new prediction model for prolonged hospitalization in adult community-acquired pneumonia(CAP)patients[J]. Clin Lab, 2022, 68(11):2271-2277. |
| [13] | ZHENG X, HUANG Z, WANG D, et al. A new haematological model for the diagnosis and prognosis of severe community-acquired pneumonia:a single-center retrospective study[J]. Ann Transl Med, 2022, 10(16):881. |
| [14] |
曾瑞璜, 王小林, 曾叶, 等. 基于数据挖掘模型分析CA125、NLR、PLR、hs-CRP联合检测对社区获得性肺炎伴胸腔积液的临床意义[J]. 检验医学, 2020, 35(11):1103-1107.
DOI |
| [15] | WITTERMANS E, VAN DE GARDE E M, VOORN G P, et al. Neutrophil count,lymphocyte count and neutrophil-to-lymphocyte ratio in relation to response to adjunctive dexamethasone treatment in community-acquired pneumonia[J]. Eur J Intern Med, 2022,96:102-108. |
| [16] |
孙康德, 虞中敏, 严育忠. 不同感染指标在细菌性血流感染早期诊断和预后评估中的价值[J]. 检验医学, 2024, 39(3):222-226.
DOI |
| [17] |
朱红, 朱宇清, 顾国宝. 正五聚体蛋白3在社区获得性肺炎临床诊断中的意义[J]. 检验医学, 2020, 35(5):424-427.
DOI |
| [18] | 李晓烂, 何永鸿, 邓俊, 等. PCT、NLR、CAR对社区获得性重症肺炎患者短期预后的预测价值[J]. 重庆医学, 2025, 54(1):86-90. |
| [1] | CHU Ye, XIONG Chunxiang, HUANG Yu, ZENG Jiaxing, YI Bode, HUANG Nenggan, YANG Yifeng, YANG Feng. Role of nomogram models based on CAR and NLR in predicting 1-year mortality in elderly patients with hip fractures after surgery [J]. Laboratory Medicine, 2025, 40(9): 834-840. |
| [2] | KE Wencai, LIU Jie, LIN Yong, LU Guangjian, JIAO Luyang. Establishment and verification of nomogram diagnostic model of osteoporosis in elders based on laboratory indicators [J]. Laboratory Medicine, 2025, 40(8): 735-741. |
| [3] | GAO Xiantong, YAO Qianqian, RU Lijuan. Establishment and clinical application evaluation of early warning model for acute pancreatitis complicated with AKI [J]. Laboratory Medicine, 2025, 40(8): 775-781. |
| [4] | JIN Weifeng, LI Dan, WANG Mengxia, PAN Nuoxuan, ZHANG Hong, LIN Ping. A risk prediction model for depressive disorders in children based on serum amino acids and cytokines [J]. Laboratory Medicine, 2025, 40(7): 666-672. |
| [5] | ZHOU Rui, YANG Aiping, ZHANG Guohua, YANG Danping, WANG Hong. Combined determination of inflammatory markers in differential diagnosis of pathogens in acute respiratory tract infections [J]. Laboratory Medicine, 2025, 40(7): 687-692. |
| [6] | WANG Xumei, XU Dongqing, GAO Limei, ZHANG Lihua, JIANG Wenli, WANG Weiwei, MA Juan, SHEN Lisong. Construction of a machine learning-based model for predicting the risk of neuroblastoma bone metastasis [J]. Laboratory Medicine, 2025, 40(6): 534-539. |
| [7] | GONG Xiaolin, DENG Kun, WU Jun, REN Chuanli, XU Songxiao, LI Shengjie, LI Bo, YANG Dagan, SHEN Han, ZHANG Yi, CHEN Ming, WU Yongkang, LUO Huaichao, YUAN Xu, XU Huaguo, GONG Qian, LI Xin, GUAN Ming. AI technology reshaping laboratory medicine from automation to intelligent decision-making [J]. Laboratory Medicine, 2025, 40(5): 413-420. |
| [8] | LING Xiaoting, PAN Liqiu, HUANG Yunhua, WEI Yuanyuan, DENG Xiaohui, YE Lihua, LIN Faquan, HUANG Yifang. Establishment of machine learning discriminatory formulas for thalassemia and iron deficiency anemia based on red blood cell morphology and parameters [J]. Laboratory Medicine, 2025, 40(4): 365-371. |
| [9] | GAO Zikang, CHEN Jing. Construction of a nomogram prediction model for the prognosis of patients with depressive disorder based on the characteristics of peripheral blood lymphocyte subsets [J]. Laboratory Medicine, 2025, 40(12): 1146-1152. |
| [10] | CHANG Nan, WEI Yali, LU Qifeng, LI Tian, HOU Tingting, LI Yuan, ZHU Mengyu, SHEN Yajuan. A machine learning early warning model for acute promyelocytic leukemia based on blood cell analyzer parameters [J]. Laboratory Medicine, 2025, 40(12): 1190-1196. |
| [11] | YANG Dagan. Application and prospect of large language models in laboratory medicine [J]. Laboratory Medicine, 2025, 40(11): 1042-1046. |
| [12] | QI Xinglun, YAO Yifan, SHEN Shushi, YANG Zheng, ZHU Junjie, FAN Lina, YANG Dagan. Performance evaluation of different large language models in interpreting tumor marker determination reports [J]. Laboratory Medicine, 2025, 40(11): 1075-1081. |
| [13] | LI Mingchao, SHEN Tong, ZHOU Binghe, DOU Xin, HU Liang, CHANG Dong, ZHANG Ze. Evaluation of prognosis prediction effects in acute ischemic stroke patients based on machine learning algorithms [J]. Laboratory Medicine, 2025, 40(10): 1004-1009. |
| [14] | WANG Qinglei, HUANG Xiansheng, FU Shan, LI Shucheng, WANG Hong. Correlation of serum TET2,ox-LDL,CLU with ventricular remodeling and major adverse cardiovascular events in patients with acute myocardial infarction [J]. Laboratory Medicine, 2025, 40(1): 49-53. |
| [15] | ZHAI Yanan, DU Yunguang, WANG Min, GUO Qingsheng, LI Qian. Correlation between serum miR-125a expression and airway remodeling in children with bronchial asthma [J]. Laboratory Medicine, 2024, 39(9): 847-852. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||