Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (2): 200-202.DOI: 10.3969/j.issn.1673-8640.2023.02.020
Received:
2021-07-10
Revised:
2022-03-16
Online:
2023-02-28
Published:
2023-04-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.02.020
抗菌药物 | 抑菌圈直径/mm | MIC值/ (μg/mL) | 抗菌药物 | 抑菌圈直径/mm | MIC值/(μg/mL) | ||
---|---|---|---|---|---|---|---|
含血M-H平皿 | M-H平皿 | 含血M-H平皿 | M-H平皿 | ||||
氨苄西林 | 30 | 28 | 哌拉西林-他唑巴坦 | 27 | 28 | ||
头孢唑林 | 20 | 20 | 米诺环素 | 13 | 14 | ||
头孢西丁 | 13 | 12 | 妥布霉素 | 12 | 15 | ||
头孢呋辛 | 23 | 22 | 青霉素 | 29 | 28 | ≥0.5 | |
头孢他啶 | 19 | 19 | 苯唑西林 | 6 | 6 | ≥4 | |
头孢噻肟 | 24 | 24 | 红霉素 | 28 | 31 | ≤0.25 | |
头孢曲松 | 24 | 26 | 氯霉素 | 25 | 27 | ||
头孢吡肟 | 28 | 27 | 克林霉素 | 6 | 6 | ≥4 | |
氨苄西林-舒巴坦 | 28 | 29 | 四环素 | 6 | 6 | ||
哌拉西林 | 27 | 25 | 万古霉素 | 20 | 22 | ≤0.5 | |
环丙沙星 | 15/16① | 23/24① | 复方磺胺甲噁唑 | 6/6① | 28/29① | ≤0.5/10 | |
左氧氟沙星 | 16 | 19 | 2 | 替考拉宁 | 20 | 21 | ≤0.5 |
庆大霉素 | 1 | 利奈唑胺 | 29 | 32 | 1 | ||
阿米卡星 | 6 | 6 | 替加环素 | 21 | 23 | ≤0.125 | |
头孢哌酮-舒巴坦 | 21 | 20 | 32 | 达托霉素 | 0.25 | ||
亚胺培南 | 28 | 29 | 利福平 | 16 | |||
美罗培南 | 26 | 29 | 莫西沙星 | 1 |
抗菌药物 | 抑菌圈直径/mm | MIC值/ (μg/mL) | 抗菌药物 | 抑菌圈直径/mm | MIC值/(μg/mL) | ||
---|---|---|---|---|---|---|---|
含血M-H平皿 | M-H平皿 | 含血M-H平皿 | M-H平皿 | ||||
氨苄西林 | 30 | 28 | 哌拉西林-他唑巴坦 | 27 | 28 | ||
头孢唑林 | 20 | 20 | 米诺环素 | 13 | 14 | ||
头孢西丁 | 13 | 12 | 妥布霉素 | 12 | 15 | ||
头孢呋辛 | 23 | 22 | 青霉素 | 29 | 28 | ≥0.5 | |
头孢他啶 | 19 | 19 | 苯唑西林 | 6 | 6 | ≥4 | |
头孢噻肟 | 24 | 24 | 红霉素 | 28 | 31 | ≤0.25 | |
头孢曲松 | 24 | 26 | 氯霉素 | 25 | 27 | ||
头孢吡肟 | 28 | 27 | 克林霉素 | 6 | 6 | ≥4 | |
氨苄西林-舒巴坦 | 28 | 29 | 四环素 | 6 | 6 | ||
哌拉西林 | 27 | 25 | 万古霉素 | 20 | 22 | ≤0.5 | |
环丙沙星 | 15/16① | 23/24① | 复方磺胺甲噁唑 | 6/6① | 28/29① | ≤0.5/10 | |
左氧氟沙星 | 16 | 19 | 2 | 替考拉宁 | 20 | 21 | ≤0.5 |
庆大霉素 | 1 | 利奈唑胺 | 29 | 32 | 1 | ||
阿米卡星 | 6 | 6 | 替加环素 | 21 | 23 | ≤0.125 | |
头孢哌酮-舒巴坦 | 21 | 20 | 32 | 达托霉素 | 0.25 | ||
亚胺培南 | 28 | 29 | 利福平 | 16 | |||
美罗培南 | 26 | 29 | 莫西沙星 | 1 |
[1] |
COLLINS M D, ASH C, FARROW J A, et al. 16S ribosomal ribonucleic acid sequence analyses of Lactococci and related taxa. Description of Vagococcus fluvialis gen. nov.,p. nov.[J]. J Appl Bacteriol, 1989, 67(4):453-460.
DOI URL |
[2] |
GE Y, YANG J, LAI X H, et al. Vagococcus xieshaowenii sp. nov.,isolated from snow finch(Montifringilla taczanowskii) cloacal content[J]. Int J Syst Evol Microbiol, 2020, 70(4):2493-2498.
DOI URL |
[3] |
MATAJITA C E C, POOR A P, MORENO L Z, et al. Vagococcus sp. a porcine pathogen:molecular and phenotypic characterization of strains isolated from diseased pigs in Brazil[J]. J Infect Dev Ctries, 2020, 14(11):1314-1319.
DOI URL |
[4] |
WULLSCHLEGER S, JANS C, SEIFERT C, et al. Vagococcus teuberi sp. nov.,isolated from the Malian artisanal sour milk fènè[J]. Syst Appl Microbiol, 2018, 41(2):65-72.
DOI URL |
[5] | GIANNATTASIO-FERRAZ S, ENE A, MASKERI L, et al. Vagococcus fluvialis isolation and sequencing from urine of healthy cattle[J]. G3(Bethesda), 2021, 11(1):jkaa034. |
[6] |
HYUN D W, TAK E J, KIM P S, et al. Description of Vagococcus coleopterorum sp. nov.,isolated from the intestine of the diving beetle,Cybister lewisianus,and Vagococcus hydrophili sp. nov.,isolated from the intestine of the dark diving beetle,Hydrophilus acuminatus,and emended description of the genus Vagococcus[J]. J Microbiol, 2021, 59(2):132-141.
DOI |
[7] | 杨苗, 陈世界, 林华, 等. 一株河流漫游球菌的分离鉴定[J]. 四川畜牧兽医, 2015, 43(9):30-32. |
[8] | 周婷, 曹喻, 段晓雷, 等. 首次从人左股骨下段术后感染穿刺液中分离河流漫游球菌[J]. 中华医院感染学杂志, 2019, 29(18):2825-2829. |
[9] |
MATSUO T, MORI N, KAWAI F, et al. Vagococcus fluvialis as a causative pathogen of bloodstream and decubitus ulcer infection:case report and systematic review of the literature[J]. J Infect Chemother, 2021, 27(2):359-363.
DOI URL |
[10] |
SHEWMAKER P L, WHITNEY A M, GULVIK C A, et al. Vagococcus bubulae sp. nov.,isolated from ground beef,and Vagococcus vulneris sp. nov.,isolated from a human foot wound[J]. Int J Syst Evol Microbiol, 2019, 69(8):2268-2276.
DOI URL |
[11] | RACERO L, BARBERIS C, TRAGLIA G, et al. Infections due to Vagococcus spp. Microbiological and clinical aspects and literature review[J]. Enferm Infecc Microbiol Clin(Engl Ed), 2020, 39(7):335-339. |
[12] | 李仲兴, 张新华, 刘怀军. 漫游球菌的研究进展[J]. 国外医学(临床生物化学与检验学分册), 2005, 26(9):631-634. |
[13] |
TEIXEIRA L M, CARVALHO M G, MERQUIOR V L, et al. Phenotypic and genotypic characterization of Vagococcus fluvialis,including strains isolated from human sources[J]. J Clin Microbiol, 1997, 35(11):2778-2781.
DOI URL |
[14] |
AL-AHMAD A, PELZ K, SCHIRRMEISTER J F, et al. Characterization of the first oral Vagococcus isolate from a root-filled tooth with periradicular lesions[J]. Curr Microbiol, 2008, 57(3):235-238.
DOI URL |
[15] |
JADHAV K P, PAI P G. A rare infective endocarditis caused by Vagococcus fluvialis[J]. J Cardiol Cases, 2019, 20(4):129-131.
DOI URL |
[16] | 郑秀玲, 江平, 廖铂, 等. 不同疾病胆道感染患者的胆汁菌群分布及影响因素分析[J]. 武汉大学学报(医学版), 2020, 41(5):786-790. |
[1] | FAN Lieying. Research status and application prospects of biomarkers for membranous nephropathy [J]. Laboratory Medicine, 2023, 38(12): 1111-1114. |
[2] | SUN Lincheng, LI Jianfeng, CHENG Weili, JI Panyun. Roles of anti-PLA2R IgG4 antibody and PLA2R IgG4/IgG ratio in primary membranous nephropathy [J]. Laboratory Medicine, 2023, 38(12): 1115-1120. |
[3] | LIU Qingyang, YUAN Jianming, XIA Jinjun, JIANG Fengying, WANG Qiubo, WANG Xiaoming. CXCL9 as a potential diagnostic marker of rheumatoid arthritis based on GEO database and experimental verification [J]. Laboratory Medicine, 2023, 38(12): 1121-1129. |
[4] | YANG Xiao, LI Enling, WU Lixia, DAI Yingxin, WANG Zhiqing, HUANG Hao, ZHENG Bing. Influence of cytoplasmic antinuclear antibody on indirect immunofluorescence assay based antineutrophil cytoplasmic antibody determination [J]. Laboratory Medicine, 2023, 38(12): 1135-1140. |
[5] | XIANG Jin, LIU Aiping, HU Yao, WU Zhiyuan, CAO Guojun, GUAN Ming. ANA profiles in COVID-19 patients and influence of serum heat-inactivation on ANA determination [J]. Laboratory Medicine, 2023, 38(12): 1141-1146. |
[6] | CHENG Yu, XU Zhen, LU Liu, DING Menglei, YU Shanshan, ZONG Ming, FAN Lieying. Expression and risk factors of anti-ACE-2 antibody in serum of patients with COVID-19 [J]. Laboratory Medicine, 2023, 38(12): 1147-1152. |
[7] | . [J]. Laboratory Medicine, 2023, 38(12): 1153-1156. |
[8] | . [J]. Laboratory Medicine, 2023, 38(12): 1157-1159. |
[9] | WANG Hongling, LIU Mengna, BAI Ping, LIAO Huanjin. Risk factors of relapse following allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia [J]. Laboratory Medicine, 2023, 38(12): 1160-1166. |
[10] | YANG Xilan, WANG Jinyu, LIU Shuyu, ZHAN Yiyang, LIU Jing, JIA Jian. Correlation between hyperlipidemia and endothelial microparticles in elderly patients from Gulou Community in Nanjing [J]. Laboratory Medicine, 2023, 38(12): 1167-1172. |
[11] | DAI Fangfang, LU Xinxin, YU Yanhua, CHEN Ming, SUN Guizhen. Analysis of Mycobacterium infection in HIV/AIDS patients [J]. Laboratory Medicine, 2023, 38(12): 1173-1176. |
[12] | GU Yu, LIANG Xiaoyan, MA Shenghui, TONG Na, CHENG Mingyan, YAN Zejun. Expression and near-term prognostic predictive value of plasma biomarkers in chronic kidney disease patients with thromboembolism [J]. Laboratory Medicine, 2023, 38(12): 1177-1182. |
[13] | . [J]. Laboratory Medicine, 2023, 38(12): 1183-1185. |
[14] | . [J]. Laboratory Medicine, 2023, 38(12): 1186-1190. |
[15] | . [J]. Laboratory Medicine, 2023, 38(12): 1191-1194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||