Laboratory Medicine ›› 2022, Vol. 37 ›› Issue (9): 872-876.DOI: 10.3969/j.issn.1673-8640.2022.09.016
Previous Articles Next Articles
KONG Yujie, WANG Chen, HE Bing
Received:
2020-12-30
Revised:
2022-04-04
Online:
2022-09-30
Published:
2022-10-25
CLC Number:
KONG Yujie, WANG Chen, HE Bing. Research progress of N6-methyladenosine in biological function and detection technology[J]. Laboratory Medicine, 2022, 37(9): 872-876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2022.09.016
肿瘤类型 | m6A调控蛋白 | 表达趋势 | 下游基因 | 肿瘤发展 |
---|---|---|---|---|
GBM①[28] | METTL3 | 下调 | ADAM19、EPHA3、KLF4、CDKN2A、BRCA2、TP53 | 抑制 |
METTL14 | 下调 | ADAM19 | 抑制 | |
ALKBH5 | 上调 | FOXM1 | 促进 | |
AML②[29] | METTL3 | 上调 | c-MYC、BCL2、PTEN | 促进 |
METTL14 | 上调 | MYB、MYC | 促进 | |
FTO | 上调 | ASB2、RARA | 促进 | |
肝细胞肝癌[ | METTL3 | 上调 | SOCS2 | 促进 |
METTL14 | 下调 | DGCR8 | 抑制 | |
YTHDF2 | 上调 | 未知 | 促进 | |
乳腺癌[ | METTL3 | 上调 | HBXIP | 促进 |
ALKBH5 | 上调 | NANOG、KLF4 | 促进 | |
胰腺癌[ | ALKBH5 | 下调 | KCNK15-AS1 | 抑制 |
YTHDF2 | 下调 | YAP | 抑制 | |
前列腺癌[ | YTHDF2 | 上调 | miR-493-3p | 促进 |
宫颈癌[ | FTO | 上调 | β-catenin | 促进 |
子宫内膜癌[ | METTL3 | 下调 | PHLPP2、mTORC2 | 抑制 |
肿瘤类型 | m6A调控蛋白 | 表达趋势 | 下游基因 | 肿瘤发展 |
---|---|---|---|---|
GBM①[28] | METTL3 | 下调 | ADAM19、EPHA3、KLF4、CDKN2A、BRCA2、TP53 | 抑制 |
METTL14 | 下调 | ADAM19 | 抑制 | |
ALKBH5 | 上调 | FOXM1 | 促进 | |
AML②[29] | METTL3 | 上调 | c-MYC、BCL2、PTEN | 促进 |
METTL14 | 上调 | MYB、MYC | 促进 | |
FTO | 上调 | ASB2、RARA | 促进 | |
肝细胞肝癌[ | METTL3 | 上调 | SOCS2 | 促进 |
METTL14 | 下调 | DGCR8 | 抑制 | |
YTHDF2 | 上调 | 未知 | 促进 | |
乳腺癌[ | METTL3 | 上调 | HBXIP | 促进 |
ALKBH5 | 上调 | NANOG、KLF4 | 促进 | |
胰腺癌[ | ALKBH5 | 下调 | KCNK15-AS1 | 抑制 |
YTHDF2 | 下调 | YAP | 抑制 | |
前列腺癌[ | YTHDF2 | 上调 | miR-493-3p | 促进 |
宫颈癌[ | FTO | 上调 | β-catenin | 促进 |
子宫内膜癌[ | METTL3 | 下调 | PHLPP2、mTORC2 | 抑制 |
检测方法 | 检测水平 | 优点 | 缺点 |
---|---|---|---|
m6A-Seq | 修饰相对丰度 | 高通量 | 对原始材料质量、数量要求高,受抗体影响大,分辨率低 |
MeRIP-Seq | 全转录组 | 操作流程完善,灵敏度高,通量高 | 对研究目标质量、数量要求高,易受抗体影响,分辨率较低,mRNA需求量较大,免疫沉淀/抗体可能会有假阳性 |
2D-TLC | m6A水平 | 定量,灵敏度高,操作流程完善 | 有放射性,精确度不高 |
斑点杂交 | m6A水平 | 成本低,没有放射性要求 | 易出现非特异性抗体结合,灵敏度低 |
LC-MS/MS | m6A水平 | 定量,灵敏度高,检测限低 | 对设备要求高,成本高,实验过程较为繁琐 |
SCARLET | 特定部位甲基化 | 高度定量,通量低,准确度高 | 成本高,有放射性,过程繁琐,不能实现高通量,不能用于转录组分析 |
PA-m6A-Seq | 单核苷酸分辨率 | 分辨率比MeRIP-Seq高,通量高 | 只适用于细胞,不能用于组织或临床样本,免疫沉淀/抗体会产生假阳性 |
mi-CLIP-Seq | 单核苷酸分辨率 | 通量高 | 对特异性抗体具有高度依赖性 |
m6A-LAIC-Seq | m6A水平 | 通量高,可量化甲基化与未甲基化RNA的百分比 | 无法检测到特定的m6A位点 |
DA-m6A-seq | m6A水平 | 更高的灵敏度和测序深度 | 成本较高,实验过程较复杂 |
检测方法 | 检测水平 | 优点 | 缺点 |
---|---|---|---|
m6A-Seq | 修饰相对丰度 | 高通量 | 对原始材料质量、数量要求高,受抗体影响大,分辨率低 |
MeRIP-Seq | 全转录组 | 操作流程完善,灵敏度高,通量高 | 对研究目标质量、数量要求高,易受抗体影响,分辨率较低,mRNA需求量较大,免疫沉淀/抗体可能会有假阳性 |
2D-TLC | m6A水平 | 定量,灵敏度高,操作流程完善 | 有放射性,精确度不高 |
斑点杂交 | m6A水平 | 成本低,没有放射性要求 | 易出现非特异性抗体结合,灵敏度低 |
LC-MS/MS | m6A水平 | 定量,灵敏度高,检测限低 | 对设备要求高,成本高,实验过程较为繁琐 |
SCARLET | 特定部位甲基化 | 高度定量,通量低,准确度高 | 成本高,有放射性,过程繁琐,不能实现高通量,不能用于转录组分析 |
PA-m6A-Seq | 单核苷酸分辨率 | 分辨率比MeRIP-Seq高,通量高 | 只适用于细胞,不能用于组织或临床样本,免疫沉淀/抗体会产生假阳性 |
mi-CLIP-Seq | 单核苷酸分辨率 | 通量高 | 对特异性抗体具有高度依赖性 |
m6A-LAIC-Seq | m6A水平 | 通量高,可量化甲基化与未甲基化RNA的百分比 | 无法检测到特定的m6A位点 |
DA-m6A-seq | m6A水平 | 更高的灵敏度和测序深度 | 成本较高,实验过程较复杂 |
[1] |
PAN Y, MA P, LIU Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018, 11(1):48.
DOI URL |
[2] | YE F. RNA N6-adenosine methylation(m6A) steers epitranscriptomic control of herpesvirus replication[J]. Inflamm Cell Signal, 2017, 4(3):e1604. |
[3] |
龙文林, 郭辉, 盛杰, 等. m6A RNA甲基化在肿瘤发生发展中的作用[J]. 生物技术通报, 2019, 35(6):178-186.
DOI |
[4] |
LIU Z X, LI L M, SUN H L, et al. Link between m6A modification and cancers[J]. Front Bioeng Biotechnol, 2018, 6:89.
DOI URL |
[5] |
PETERS T, AUSMEIER K, RÜTHER U. Cloning of Fatso(Fto),a novel gene deleted by the Fused toes(Ft) mouse mutation[J]. Mamm Genome, 1999, 10(10):983-986.
DOI URL |
[6] |
CLANCY M J, SHAMBAUGH M E, TIMPTE C S, et al. Induction of sporulation in saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA:a potential mechanism for the activity of the IME4 gene[J]. Nucleic Acids Res, 2002, 30(20):4509-4518.
DOI URL |
[7] |
ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29.
DOI PMID |
[8] |
HUANG Y, YAN J, LI Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384.
DOI PMID |
[9] |
XU C, LIU K, TEMPEL W, et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation[J]. J Biol Chem, 2014, 289(25):17299-17311.
DOI PMID |
[10] |
UEDA Y, OOSHIO I, FUSAMAE Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7:42271.
DOI PMID |
[11] |
LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564.
DOI URL |
[12] |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399.
DOI PMID |
[13] |
LI A, CHEN Y S, PING X L, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3):444-447.
DOI URL |
[14] |
ROUNDTREE I A, LUO G Z, ZHANG Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311.
DOI URL |
[15] |
WOJTAS M N, PANDEY R R, MENDEL M, et al. Regulation of m6A transcripts by the 3'→5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline[J]. Mol Cell, 2017, 68(2):374-387.e12.
DOI URL |
[16] |
ALARCÓN C R, GOODARZI H, LEE H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6):1299-1308.
DOI PMID |
[17] |
MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m(6)A promotes cap-independent translation[J]. Cell, 2015, 163(4):999-1010.
DOI URL |
[18] |
BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nat Rev Mol Cell Biol, 2017, 18(7):437-451.
DOI URL |
[19] |
FUSTIN J M, DOI M, YAMAGUCHI Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock[J]. Cell, 2013, 155(4):793-806.
DOI URL |
[20] |
SHIMA H, MATSUMOTO M, ISHIGAMI Y, et al. S-adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1[J]. Cell Rep, 2017, 21(12):3354-3363.
DOI URL |
[21] |
SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3):315-328.
DOI URL |
[22] |
HUANG H, WENG H, SUN W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3):285-295.
DOI URL |
[23] |
CHOE J, LIN S, ZHANG W, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature, 2018, 561(7724):556-560.
DOI URL |
[24] |
WANG C X, CUI G S, LIU X, et al. METTL3-mediated m6A modification is required for cerebellar development[J]. PLoS Biol, 2018, 16(6):e2004880.
DOI URL |
[25] |
ZHANG Z, WANG M, XIE D, et al. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation[J]. Cell Res, 2018, 28(11):1050-1061.
DOI URL |
[26] |
MERKURJEV D, HONG W T, IIDA K, et al. Synaptic N6-methyladenosine(m6A) epitranscriptome reveals functional partitioning of localized transcripts[J]. Nat Neurosci, 2018, 21(7):1004-1014.
DOI URL |
[27] |
ZHANG C, CHEN Y, SUN B, et al. m6A modulates haematopoietic stem and progenitor cell specification[J]. Nature, 2017, 549(7671):273-276.
DOI URL |
[28] |
CUI Q, SHI H, YE P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017, 18(11):2622-2634.
DOI URL |
[29] |
WENG H, HUANG H, WU H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification[J]. Cell Stem Cell, 2018, 22(2):191-205.e9.
DOI URL |
[30] |
CHEN M, WEI L, LAW C T, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6):2254-2270.
DOI PMID |
[31] |
CAI X, WANG X, CAO C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018, 415:11-19.
DOI PMID |
[32] |
HE Y, HU H, WANG Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation[J]. Cell Physiol Biochem, 2018, 48(2):838-846.
DOI PMID |
[33] |
LI J, MENG S, XU M, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2017, 9(3):3752-3764.
DOI URL |
[34] |
ZHOU S, BAI Z L, XIA D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma(CSCC) by targeting β-catenin through mRNA demethylation[J]. Mol Carcinog, 2018, 57(5):590-597.
DOI URL |
[35] |
LIU J, ECKERT M A, HARADA B T, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018, 20(9):1074-1083.
DOI URL |
[36] | BOREK E. Toward a universal tumour marker[J]. Tumour Biol, 1984, 5(1):1-14. |
[37] |
GEHRKE C W, KUO K C, WAALKES T P, et al. Patterns of urinary excretion of modified nucleosides[J]. Cancer Res, 1979, 39(4):1150-1153.
PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||