Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (6): 615-620.DOI: 10.3969/j.issn.1673-8640.2025.06.017
Previous Articles Next Articles
CAO Shuxian, GAO Yinan, SONG Yufan, LU Sumei()
Received:
2024-02-18
Revised:
2024-12-04
Online:
2025-06-30
Published:
2025-07-01
Contact:
LU Sumei
CLC Number:
CAO Shuxian, GAO Yinan, SONG Yufan, LU Sumei. Research progress of lipid peroxidation in dysregulation of glucose and lipid metabolism[J]. Laboratory Medicine, 2025, 40(6): 615-620.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.06.017
同工酶 | 氧化代谢产物 | 酶的分布 | 功能 |
---|---|---|---|
COX | PGG2、PGH2、PGX2、TXA2 | 全身各处 | 血小板活化,抑癌或促癌,抑炎,水盐平衡或激素分泌 |
LOX | HPETE①、HETE、EET、LX、LT | 表皮、白细胞、肥大细胞、树突状细胞、淋巴细胞等 | 参与哮喘的形成,参与动脉粥样硬化的发生,促炎,抑炎,参与鱼鳞病的发生 |
CYP450 | EET、HETE | 全身各处 | 抑炎或促炎,参与高血压、糖尿病、肿瘤的发展 |
同工酶 | 氧化代谢产物 | 酶的分布 | 功能 |
---|---|---|---|
COX | PGG2、PGH2、PGX2、TXA2 | 全身各处 | 血小板活化,抑癌或促癌,抑炎,水盐平衡或激素分泌 |
LOX | HPETE①、HETE、EET、LX、LT | 表皮、白细胞、肥大细胞、树突状细胞、淋巴细胞等 | 参与哮喘的形成,参与动脉粥样硬化的发生,促炎,抑炎,参与鱼鳞病的发生 |
CYP450 | EET、HETE | 全身各处 | 抑炎或促炎,参与高血压、糖尿病、肿瘤的发展 |
代谢产物 | 功能 | 参考文献 |
---|---|---|
PGI2 | 促炎,促进脂肪细胞分化 | [ |
PGE2 | 抑制前脂肪细胞分化,促进结肠癌发生、发展,抑制癌细胞凋亡,促进癌细胞增殖、侵袭和转移 | [ |
PGD2 | 参与哮喘形成,促炎 | [ |
PGF2α | 使血管收缩、血压升高,参与抑制脂肪生成 | [ |
TX | 诱导血小板活性、诱导血管生成 | [ |
代谢产物 | 功能 | 参考文献 |
---|---|---|
PGI2 | 促炎,促进脂肪细胞分化 | [ |
PGE2 | 抑制前脂肪细胞分化,促进结肠癌发生、发展,抑制癌细胞凋亡,促进癌细胞增殖、侵袭和转移 | [ |
PGD2 | 参与哮喘形成,促炎 | [ |
PGF2α | 使血管收缩、血压升高,参与抑制脂肪生成 | [ |
TX | 诱导血小板活性、诱导血管生成 | [ |
代谢产物 | 功能 | 参考文献 |
---|---|---|
HETE | 刺激平滑肌细胞收缩、迁移和增殖,激活内皮细胞功能障碍,促炎 | [ |
TX | 抑炎,抗纤维化 | [ |
代谢产物 | 功能 | 参考文献 |
---|---|---|
HETE | 刺激平滑肌细胞收缩、迁移和增殖,激活内皮细胞功能障碍,促炎 | [ |
TX | 抑炎,抗纤维化 | [ |
代谢产物 | 功能 | 参考文献 |
---|---|---|
DHET | 调节炎症,参与动脉粥样硬化发展 | [ |
HETE | 调节血压平衡和水平衡,维持平滑肌细胞收缩 | [ |
EET | 调节肿瘤发生、发展,调节细胞增殖,参与血管生成、促血管舒张和抗炎作用 | [ |
代谢产物 | 功能 | 参考文献 |
---|---|---|
DHET | 调节炎症,参与动脉粥样硬化发展 | [ |
HETE | 调节血压平衡和水平衡,维持平滑肌细胞收缩 | [ |
EET | 调节肿瘤发生、发展,调节细胞增殖,参与血管生成、促血管舒张和抗炎作用 | [ |
[1] |
JEON S, CARR R. Alcohol effects on hepatic lipid metabolism[J]. J Lipid Res, 2020, 61(4):470-479.
DOI PMID |
[2] |
PENG Y, LI Z, ZHANG Z, et al. Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury[J]. Neural Regen Res, 2024, 19(5):1142-1149.
DOI PMID |
[3] | BADMUS O O, HILLHOUSE S A, ANDERSON C D, et al. Molecular mechanisms of metabolic associated fatty liver disease(MAFLD):functional analysis of lipid metabolism pathways[J]. Clin Sci(Lond), 2022, 136(18):1347-1366. |
[4] | VIGOR C, BERTRAND-MICHEL J, PINOT E, et al. Non-enzymatic lipid oxidation products in biological systems:assessment of the metabolites from polyunsaturated fatty acids[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 964:65-78. |
[5] | MORITA M, NAITO Y, YOSHIKAWA T, et al. Plasma lipid oxidation induced by peroxynitrite,hypochlorite,lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyL-1-pyrenylphosphine[J]. Redox Biol, 2016, 8:127-135. |
[6] | ALVAREZ M L, LORENZETTI F. Role of eicosanoids in liver repair,regeneration and cancer[J]. Biochem Pharmacol, 2021, 192:114732. |
[7] | MITCHELL J A, KIRKBY N S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system[J]. Br J Pharmacol, 2019, 176(8):1038-1050. |
[8] | FREJBORG E, SALO T, SALEM A. Role of cyclooxygenase-2 in head and neck tumorigenesis[J]. Int J Mol Sci, 2020, 21(23):9246. |
[9] | HAJEYAH A A, GRIFFITHS W J, WANG Y, et al. The biosynthesis of enzymatically oxidized lipids[J]. Front Endocrinol(Lausanne), 2020, 11:591819. |
[10] |
FEUSSNER I, WASTERNACK C. The lipoxygenase pathway[J]. Annu Rev Plant Biol, 2002, 53:275-297.
PMID |
[11] | JANSEN C, HOFHEINZ K, VOGEL R, et al. Stereocontrol of arachidonic acid oxygenation by vertebrate lipoxygenases:newly cloned zebrafish lipoxygenase 1 does not follow the Ala-versus-Gly concept[J]. J Biol Chem, 2011, 286(43):37804-37812. |
[12] | PANG Y, LIU X, ZHAO C, et al. LC-MS/MS-based arachidonic acid metabolomics in acute spinal cord injury reveals the upregulation of 5-LOX and COX-2 products[J]. Free Radic Biol Med, 2022, 193(Pt 1):363-372. |
[13] | BALDWIN W S. Phase 0 of the xenobiotic response:nuclear receptors and other transcription factors as a first step in protection from xenobiotics[J]. Nucl Receptor Res, 2019, 6:101447. |
[14] | ZHOU M, LI J, XU J, et al. Exploring human CYP4 enzymes:physiological roles,function in diseases and focus on inhibitors[J]. Drug Discov Today, 2023, 28(5):103560. |
[15] |
BERGMANN C B, HAMMOCK B D, WAN D, et al. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function[J]. Sci Rep, 2021, 11(1):16555.
DOI PMID |
[16] | KELLY K A, HAVRILLA C M, BRADY T C, et al. Oxidative stress in toxicology:established mammalian and emerging piscine model systems[J]. Environ Health Perspect, 1998, 106(7):375-384. |
[17] | NONO NANKAM P A, NGUELEFACK T B, GOEDECKE J H, et al. Contribution of adipose tissue oxidative stress to obesity-associated diabetes risk and ethnic differences:focus on women of African ancestry[J]. Antioxidants(Basel), 2021, 10(4):622. |
[18] | PAN Y, CAO S, TANG J, et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice[J]. J Clin Invest, 2022, 132(9):e152391. |
[19] | KARPISHEH V, NIKKHOO A, HOJJAT-FARSANGI M, et al. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer[J]. Prostaglandins Other Lipid Mediat, 2019, 144:106338. |
[20] | ZHU R, WANG X H, WANG B W, et al. Prostaglandin F2α regulates adipogenesis by modulating extracellular signal-regulated kinase signaling in Graves' ophthalmopathy[J]. Int J Mol Sci, 2023, 24(8):7012. |
[21] | RICHELSEN B. Prostaglandin E2 action and binding in human adipocytes:effects of sex,age,and obesity[J]. Metabolism, 1988, 37(3):268-275. |
[22] | RAHMAN M S. Prostacyclin:a major prostaglandin in the regulation of adipose tissue development[J]. J Cell Physiol, 2019, 234(4):3254-3262. |
[23] | DOMINGO C, PALOMARES O, SANDHAM D A, et al. The prostaglandin D2 receptor 2 pathway in asthma:a key player in airway inflammation[J]. Respir Res, 2018, 19(1):189. |
[24] |
SAMUCHIWAL S K, BOYCE J A. Role of lipid mediators and control of lymphocyte responses in type 2 immunopathology[J]. J Allergy Clin Immunol, 2018, 141(4):1182-1190.
DOI PMID |
[25] | NAJAR M, OUHADDI Y, PARÉ F, et al. Role of lipocalin-type prostaglandin D synthase in experimental osteoarthritis[J]. Arthritis Rheumatol, 2020, 72(9):1524-1533. |
[26] | YAMANE S, AMANO H, ITO Y, et al. The role of thromboxane prostanoid receptor signaling in gastric ulcer healing[J]. Int J Exp Pathol, 2022, 103(1):4-12. |
[27] | ZHANG Y, LIU Y, SUN J, et al. Arachidonic acid metabolism in health and disease[J]. MedComm(2020), 2023, 4(5):e363. |
[28] | SINGH N K, RAO G N. Emerging role of 12/15-lipoxygenase(ALOX15)in human pathologies[J]. Prog Lipid Res, 2019, 73:28-45. |
[29] | 任咪咪, 孙宏志, 马莉, 等. 12/15-脂氧合酶在糖尿病肾脏疾病中的研究进展[J]. 中华肾脏病杂志, 2022, 38(8):754-759. |
[30] | DOBRIAN A D, LIEB D C, MA Q, et al. Differential expression and localization of 12/15 lipoxygenases in adipose tissue in human obese subjects[J]. Biochem Biophys Res Commun, 2010, 403(3):485-490. |
[31] | WANG B, WU L, CHEN J, et al. Metabolism pathways of arachidonic acids:mechanisms and potential therapeutic targets[J]. Signal Transduct Target Ther, 2021, 6(1):94. |
[32] |
HAEGGSTRÖM J Z. Leukotriene biosynthetic enzymes as therapeutic targets[J]. J Clin Invest, 2018, 128(7):2680-2690.
DOI PMID |
[33] | 刘充, 刘迎迎, 郭兆安. 特异性促炎消退介质在糖尿病肾脏疾病中的研究进展[J]. 基础医学与临床, 2023, 43(7):1152-1156. |
[34] | DAS U N. Beneficial role of bioactive lipids in the pathobiology,prevention,and management of HBV,HCV and alcoholic hepatitis,NAFLD,and liver cirrhosis:a review[J]. J Adv Res, 2018, 17:17-29. |
[35] | SOTÁK M, RAJAN M R, CLARK M, et al. Lipoxins reduce obesity-induced adipose tissue inflammation in 3D-cultured human adipocytes and explant cultures[J]. iScience, 2022, 25(7):104602. |
[36] |
ZHA W, EDIN M L, VENDROV K C, et al. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity[J]. J Lipid Res, 2014, 55(10):2124-2136.
DOI PMID |
[37] |
KROGSTAD V, PERIC A, ROBERTSEN I, et al. A comparative analysis of cytochrome P450 activities in paired liver and small intestinal samples from patients with obesity[J]. Drug Metab Dispos, 2020, 48(1):8-17.
DOI PMID |
[38] | ROCIC P, SCHWARTZMAN M L. 20-HETE in the regulation of vascular and cardiac function[J]. Pharmacol Ther, 2018, 192:74-87. |
[39] | YEN H C, WEI H J, LIN C L. Unresolved issues in the analysis of F2-isoprostanes,F4-neuroprostanes,isofurans,neurofurans,and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry[J]. Free Radic Res, 2015, 49(7):861-880. |
[40] | DALLE-DONNE I, ROSSI R, COLOMBO R, et al. Biomarkers of oxidative damage in human disease[J]. Clin Chem, 2006, 52(4):601-623. |
[41] | ITO F, SONO Y, ITO T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress:oxidative stress in diabetes,atherosclerosis,and chronic inflammation[J]. Antioxidants(Basel), 2019, 8(3):72. |
[42] | ZHONG S, LI L, SHEN X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases[J]. Free Radic Biol Med, 2019, 144:266-278. |
[43] | SETHIYA N K, GHILORIA N, SRIVASTAV A, et al. Therapeutic potential of myricetin in the treatment of neurological,neuropsychiatric,and neurodegenerative disorders[J]. CNS Neurol Disord Drug Targets, 2024, 23(7):865-882. |
[44] | REDDY P H, OLIVER D M. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease[J]. Cells, 2019, 8(5):488. |
[45] | BREITZIG M, BHIMINENI C, LOCKEY R, et al. 4-Hydroxy-2-nonenal:a critical target in oxidative stress?[J] Am J Physiol Cell Physiol, 2016, 311(4):C537-C543. |
[46] | 麻京豫, 魏经汉, 赵洛沙. 急性冠状动脉综合征8-异前列腺素F2α与血脂、体重指数及腰臀比的相关性研究[J]. 中国综合临床, 2005, 21(9):781-783. |
[47] | DHAM D, ROY B, GOWDA A, et al. 4-Hydroxy-2-nonenal,a lipid peroxidation product,as a biomarker in diabetes and its complications:challenges and opportunities[J]. Free Radic Res, 2021, 55(5):547-561. |
[1] | ZHAO Qian, ZENG Limin, ZHOU Liping, QI Lin. Relationship between CYP2C19 polymorphism and miR-374b-5p with neurological impairment and short-term prognosis in patients with acute cerebral infarction [J]. Laboratory Medicine, 2024, 39(6): 536-541. |
[2] | SHEN Jinjin, XUE Han, LI Jinfu, GAO Lifei, ZHENG Yehuan. Research progress on the factors of CYP2D6 genotyping [J]. Laboratory Medicine, 2024, 39(3): 291-297. |
[3] | WANG Qian, ZHU Shiyao, LU Di, ZHU Kun, WU Jiong, QUAN Jiali. Arteriosclerotic cardiovascular disease risk markers research progress [J]. Laboratory Medicine, 2021, 36(4): 447-452. |
[4] | CHEN Dan, XU Ting, ZHANG Jiexin, ZHAO Hong, RONG Guodong, PAN Shiyang, WANG Fang, HUANG Peijun. Performance of real-time fluorescence PCR for the determination of CYP2C19 polymorphisms [J]. Laboratory Medicine, 2017, 32(9): 801-805. |
[5] | WANG Wenhui, YANG Weihua, DU Yiqiao, LIANG Fadong, YANG Zhenhua. Correlation of ALOX5AP gene single nucleotide polymorphisms and carotid plaques in patients with ischemic cerebral stroke [J]. Laboratory Medicine, 2017, 32(6): 474-480. |
[6] | BAO Yun, XIAO Yanqun, JIANG Lingli, WANG Xueliang, YANG Yixiao, WANG Hualiang. External quality assessment for clopidogrel therapy-related genotyping in Shanghai [J]. Laboratory Medicine, 2017, 32(3): 229-233. |
[7] | JIN Lilan, CAI Gang, LIN Lin, WANG Xianghui. Taqman-MGB method for determining CYP3A5 rs776746 site SNP and the influence of this site on the metabolism of tacrolimus [J]. Laboratory Medicine, 2015, 30(8): 830-834. |
[8] | ZHOU Yiwen, ZHOU Yan, WU Jiong, JU Yinghui, GUO Wei. The influence of CYP3A4, CYP3A5 and CYP2D6 single nucleotide polymorphism on tacrolimus metabolism in renal transplantation patients during stable period [J]. Laboratory Medicine, 2015, 30(11): 1091-1095. |
[9] | NIU Guoping, WEI Yuanyuan. Gene polymorphism of CYP2C9 and VKORC1 and their relationships to the dosage of warfarin [J]. , 2014, 29(6): 635-639. |
[10] | LI Qi,WANG Yan, QIU Yifan, DONG Ling, CHEN Kelin. Correlationship research of ALOX12 gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy [J]. , 2014, 29(3): 219-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||