Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (4): 394-398.DOI: 10.3969/j.issn.1673-8640.2023.04.018
Previous Articles Next Articles
Received:
2022-06-26
Revised:
2023-02-03
Online:
2023-04-28
Published:
2023-06-21
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.04.018
1. |
WU F, ZHAO S, YU B, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798):265-269.
DOI |
2. |
ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273.
DOI |
3. |
CHAN J F, KOK K H, ZHU Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9(1):221-236.
DOI URL |
4. |
ANDERSEN K G, RAMBAUT A, LIPKIN WI, et al. The proximal origin of SARS-CoV-2[J]. Nat Med, 2020, 26(4):450-452.
DOI PMID |
5. |
RAMAN R, PATEL K J, RANJAN K. COVID-19:unmasking emerging SARS-CoV-2 variants,vaccines and therapeutic strategies[J]. Biomolecules, 2021, 11(7):993.
DOI URL |
6. |
CHERIAN S, POTDAR V, JADHAV S, et al. SARS-CoV-2 spike mutations,L452R,T478K,E484Q and P681R,in the second wave of COVID-19 in Maharashtra,India[J]. Microorganisms, 2021, 9(7):1542.
DOI URL |
7. |
MOTOZONO C, TOYODA M, ZAHRADNIK J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity[J]. Cell Host Microbe, 2021, 29(7):1124-1136.e11.
DOI PMID |
8. |
KHAN A, WEI D Q, KOUSAR K, et al. Preliminary structural data revealed that the SARS-CoV-2 B.1.617 variant's RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity[J]. Chembiochem, 2021, 22(16):2641-2649.
DOI PMID |
9. |
WANG M Y, ZHAO R, GAO L J, et al. SARS-CoV-2:structure,biology,and structure-based therapeutics development[J]. Front Cell Infect Microbiol, 2020, 10:587269.
DOI URL |
10. |
KANNAN S R, SPRATT A N, COHEN A R, et al. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses[J]. J Autoimmun, 2021, 124:102715.
DOI URL |
11. | KANNAN S, SHAIK SYED ALI P, SHEEZA A. Evolving biothreat of variant SARS-CoV-2 - molecular properties,virulence and epidemiology[J]. Eur Rev Med Pharmacol Sci, 2021, 25(12):4405-4412. |
12. |
YI C, SUN X, YE J, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies[J]. Cell Mol Immunol, 2020, 17(6):621-630.
DOI PMID |
13. | KANNAN S, SHAIK SYED ALI P, SHEEZA A. Omicron(B.1.1.529)-variant of concern-molecular profile and epidemiology:a mini review[J]. Eur Rev Med Pharmacol Sci, 2021, 25(24):8019-8022. |
14. |
TIAN D, SUN Y, XU H, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant[J]. J Med Virol, 2022, 94(6):2376-2383.
DOI PMID |
15. |
LI X, GENG M, PENG Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19[J]. J Pharm Anal, 2020, 10(2):102-108.
DOI PMID |
16. |
RAHIMI F, TALEBI BEZMIN ABADI A. Implications of the SARS-CoV-2 subvariants BA.4 and BA.5[J]. Int J Surg, 2022, 104:106806.
DOI URL |
17. |
DESINGU P A, NAGARAJAN K. The emergence of Omicron lineages BA.4 and BA.5,and the global spreading trend[J]. J Med Virol, 2022, 94(11):5077-5079.
DOI URL |
18. |
TUEKPRAKHON A, NUTALAI R, DIJOKAITE-GURALIUC A, et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum[J]. Cell, 2022, 185(14):2422-2433.e13.
DOI PMID |
19. |
WANG Q, IKETANI S, LI Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants[J]. Cell, 2023, 186(2):279-286.e8.
DOI PMID |
20. | CAO Y, JIAN F, WANG J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution[J]. Nature, 2023, 614(7948):521-529. |
21. |
YOO H M, KIM I H, KIM S. Nucleic acid testing of SARS-CoV-2[J]. Int J Mol Sci, 2021, 22(11):6150.
DOI URL |
22. | 中国疾病预防控制中心. 新型冠状病毒肺炎实验室检测技术指南[EB/OL].(2020-03-08)[2020-03-26]. https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11815/202003/W020200309540843062947.pdf. |
23. | MARDIAN Y, KOSASIH H, KARYANA M, et al. Review of current COVID-19 diagnostics and opportunities for further development[J]. Front Med(Lausanne), 2021, 8:615099. |
24. |
LI T, WANG L, WANG H, et al. Serum SARS-COV-2 nucleocapsid protein:a sensitivity and specificity early diagnostic marker for SARS-COV-2 infection[J]. Front Cell Infect Microbiol, 2020, 10:470.
DOI URL |
25. |
CHAIMAYO C, KAEWNAPHAN B, TANLIENG N, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand[J]. Virol J, 2020, 17(1):177.
DOI PMID |
26. | 新冠病毒抗原检测应用方案(试行)政策解读[EB/OL]. (2022-03-12) [2022-06-26] http://www.gov.cn/zhengce/2022-03/12/content_5678708.htm |
27. |
LONG Q X, TANG X J, SHI Q L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections[J]. Nat Med, 2020, 26(8):1200-1204.
DOI |
28. |
SUN B, FENG Y, MO X, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients[J]. Emerg Microbes Infect, 2020, 9(1):940-948.
DOI URL |
29. |
DONG L, ZHOU J, NIU C, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR[J]. Talanta, 2021, 224:121726.
DOI URL |
30. | HU X, DENG Q, LI J, et al. Development and clinical application of a rapid and sensitive loop-mediated isothermal amplification test for SARS-CoV-2 infection[J]. mSphere, 2020, 5(4):e00808-e00820. |
31. |
NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12):E63.
DOI PMID |
[1] | FAN Lieying. Research status and application prospects of biomarkers for membranous nephropathy [J]. Laboratory Medicine, 2023, 38(12): 1111-1114. |
[2] | SUN Lincheng, LI Jianfeng, CHENG Weili, JI Panyun. Roles of anti-PLA2R IgG4 antibody and PLA2R IgG4/IgG ratio in primary membranous nephropathy [J]. Laboratory Medicine, 2023, 38(12): 1115-1120. |
[3] | LIU Qingyang, YUAN Jianming, XIA Jinjun, JIANG Fengying, WANG Qiubo, WANG Xiaoming. CXCL9 as a potential diagnostic marker of rheumatoid arthritis based on GEO database and experimental verification [J]. Laboratory Medicine, 2023, 38(12): 1121-1129. |
[4] | YANG Xiao, LI Enling, WU Lixia, DAI Yingxin, WANG Zhiqing, HUANG Hao, ZHENG Bing. Influence of cytoplasmic antinuclear antibody on indirect immunofluorescence assay based antineutrophil cytoplasmic antibody determination [J]. Laboratory Medicine, 2023, 38(12): 1135-1140. |
[5] | XIANG Jin, LIU Aiping, HU Yao, WU Zhiyuan, CAO Guojun, GUAN Ming. ANA profiles in COVID-19 patients and influence of serum heat-inactivation on ANA determination [J]. Laboratory Medicine, 2023, 38(12): 1141-1146. |
[6] | CHENG Yu, XU Zhen, LU Liu, DING Menglei, YU Shanshan, ZONG Ming, FAN Lieying. Expression and risk factors of anti-ACE-2 antibody in serum of patients with COVID-19 [J]. Laboratory Medicine, 2023, 38(12): 1147-1152. |
[7] | . [J]. Laboratory Medicine, 2023, 38(12): 1153-1156. |
[8] | . [J]. Laboratory Medicine, 2023, 38(12): 1157-1159. |
[9] | WANG Hongling, LIU Mengna, BAI Ping, LIAO Huanjin. Risk factors of relapse following allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia [J]. Laboratory Medicine, 2023, 38(12): 1160-1166. |
[10] | YANG Xilan, WANG Jinyu, LIU Shuyu, ZHAN Yiyang, LIU Jing, JIA Jian. Correlation between hyperlipidemia and endothelial microparticles in elderly patients from Gulou Community in Nanjing [J]. Laboratory Medicine, 2023, 38(12): 1167-1172. |
[11] | DAI Fangfang, LU Xinxin, YU Yanhua, CHEN Ming, SUN Guizhen. Analysis of Mycobacterium infection in HIV/AIDS patients [J]. Laboratory Medicine, 2023, 38(12): 1173-1176. |
[12] | GU Yu, LIANG Xiaoyan, MA Shenghui, TONG Na, CHENG Mingyan, YAN Zejun. Expression and near-term prognostic predictive value of plasma biomarkers in chronic kidney disease patients with thromboembolism [J]. Laboratory Medicine, 2023, 38(12): 1177-1182. |
[13] | . [J]. Laboratory Medicine, 2023, 38(12): 1183-1185. |
[14] | . [J]. Laboratory Medicine, 2023, 38(12): 1186-1190. |
[15] | . [J]. Laboratory Medicine, 2023, 38(12): 1191-1194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||