| [1] |
黄美恋, 韦蓓, 陈嫣, 等. 循证美国近50年感染性沙门菌流行病学变化趋势[J]. 中国食品卫生杂志, 2024, 36(7):886-897.
|
| [2] |
FERRARI R G, ROSARIO D K A, CUNHA-NETO A, et al. Worldwide epidemiology of Salmonella serovars in animal-based foods:a meta-analysis[J]. Appl Environ Microbiol, 2019, 85(14):e00591.
|
| [3] |
罗铭, 顾桂敏, 景春梅, 等. 猪霍乱沙门菌在全球的流行和耐药特征[J]. 疾病监测, 2018, 33(8):690-699.
|
| [4] |
PATERSON D L, HARRISON M W, ROBSON J M. Clinical spectrum of urinary tract infections due to nontyphoidal Salmonella species[J]. Clin Infect Dis, 1997, 25(3):754.
|
| [5] |
MELLON G, DELANOE C, ROUX A L, et al. Non-typhi Salmonella enterica urinary tract infections[J]. Med Mal Infect, 2017, 47(6):389-393.
DOI
URL
|
| [6] |
GORELIK Y, PAUL M, GEFFEN Y, et al. Urinary tract infections due to nontyphoidal Salmonella[J]. Am J Med Sci, 2017, 353(6):529-532.
DOI
URL
|
| [7] |
DOS REIS R O, CECCONI M C, TIMM L, et al. Salmonella isolates from urine cultures:serotypes and antimicrobial resistance in hospital settings[J]. Braz J Microbiol, 2019, 50(2):445-448.
DOI
|
| [8] |
XIONG Z, WANG S, HUANG Y, et al. Ciprofloxacin-resistant Salmonella enterica serovar Kentucky ST198 in broiler chicken supply chain and patients,China,2010-2016[J]. Microorganisms, 2020, 8(1):140.
DOI
URL
|
| [9] |
WANG J, MEI CY, WU H, et al. First detection of CTX-M-14-producing multidrug-resistant Salmonella enterica serotype Kentucky ST198 epidemic clone from a retail vegetable,China[J]. J Glob Antimicrob Resist, 2021, 26:252-254.
DOI
URL
|
| [10] |
COIPAN C E, WESTRELL T, VAN HOEK A H A M, et al. Genomic epidemiology of emerging ESBL-producing Salmonella Kentucky blaCTX-M-14b in Europe[J]. Emerg Microbes Infect, 2020, 9(1):2124-2135.
DOI
URL
|
| [11] |
中华人民共和国国家卫生和计划生育委员会. WS/T 498—2017 细菌性腹泻临床实验室诊断操作指南[S]. 北京: 中华人民共和国国家卫生和计划生育委员会, 2017.
|
| [12] |
中华人民共和国卫生部. WS 271—2007 感染性腹泻诊断标准[S]. 北京: 中华人民共和国卫生部, 2007.
|
| [13] |
尚红, 王毓三, 申子瑜. 全国临床检验操作规程[M]. 4版. 北京: 人民卫生出版社, 2015.
|
| [14] |
陈建辉, 刘玥, 邱玉峰, 等. 福建省1975—2021年沙门菌血清型分布和表型特征[J]. 中国食品卫生杂志, 2023, 35(9):1249-1257.
|
| [15] |
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. M100-Ed33,CLSI, 2023.
|
| [16] |
STEPAN R M, SHERWOOD J S, PETERMANN S R, et al. Molecular and comparative analysis of Salmonella enterica senftenberg from humans and animals using PFGE, MLST and NARMS[J]. BMC Microbiol, 2011, 11:153.
DOI
|
| [17] |
WANG Y, LIU Y, LYU N, et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China[J]. Natl Sci Rev, 2022, 10(3):nwac269.
|
| [18] |
WANG Y, XU X, ZHU B, et al. Genomic analysis of almost 8 000 Salmonella genomes reveals drivers and landscape of antimicrobial resistance in China[J]. Microbiol Spectr, 2023, 11(6):e0208023.
DOI
URL
|
| [19] |
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union one health 2020 zoonoses report[J]. EFSA J, 2021, 19(12):e06971.
|
| [20] |
HAWKEY J, LE HELLO S, DOUBLET B, et al. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198[J]. Microb Genom, 2019, 5(7):e000269.
|
| [21] |
WEILL F X, BERTRAND S, GUESNIER F, et al. Ciprofloxacin-resistant Salmonella Kentucky in travelers[J]. Emerg Infect Dis, 2006, 12(10):1611-1612.
DOI
URL
|
| [22] |
LE HELLO S, WEILL F X, GUIBERT V, et al. Early strains of multidrug-resistant Salmonella enterica serovar Kentucky sequence type 198 from southeast Asia harbor Salmonella genomic island 1-J variants with a novel insertion sequence[J]. Antimicrob Agents Chemother, 2012, 56(10):5096-5102.
DOI
URL
|
| [23] |
LE HELLO S, HARROIS D, BOUCHRIF B, et al. Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1:a microbiological study[J]. Lancet Infect Dis, 2013, 13(8):672-679.
DOI
URL
|
| [24] |
WANG Z, JIANG Y, XU H, et al. Poultry production as the main reservoir of ciprofloxacin- and tigecycline-resistant extended-spectrum β-lactamase(ESBL)-producing Salmonella enterica serovar Kentucky ST198.2-2 causing human infections in China[J]. Appl Environ Microbiol, 2023, 89(9):e0094423.
DOI
URL
|
| [25] |
CHEN H, SONG J, ZENG X, et al. National Prevalence of Salmonella enterica serotype Kentucky ST198 with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins in China,2013 to 2017[J]. mSystems, 2021, 6(1):e00935.
|
| [26] |
COLOMBE S, JERNBERG C, LÖF E, et al. Outbreak of unusual H2S-negative monophasic Salmonella Typhimurium strain likely associated with small tomatoes,Sweden,August to October 2019[J]. Euro Surveill, 2019, 24(47):1900643.
|
| [27] |
YI S, XIE J, LIU N, et al. Emergence and prevalence of non-H2S-producing Salmonella enterica serovar Senftenberg isolates belonging to novel sequence type 1751 in China[J]. J Clin Microbiol, 2014, 52(7):2557-2565.
DOI
URL
|
| [28] |
SHE Y, JIANG Y, LUO M, et al. Emergence of chromosomally located blaCTX-M-14b and qnrS1 in Salmonella enterica serotype Kentucky ST198 in China[J]. Int J Antimicrob Agents, 2023, 62(3):106896.
DOI
URL
|
| [29] |
WEIN T, HÜLTER N F, MIZRAHI I, et al. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance[J]. Nat Commun, 2019, 10(1):2595.
DOI
PMID
|
| [30] |
World Health Organization. Critically important antimicrobials for human medicine[EB/OL]. (2019-03-20) [2024-05-03]. https://iris.who.int/bitstream/handle/10665/312266/9789241515528-eng.
|
| [31] |
NICKEL J C, DOIRON R C. An effective sublingual vaccine,MV140,safely reduces risk of recurrent urinary tract infection in women[J]. Pathogens, 2023, 12(3):359.
DOI
URL
|
| [32] |
WANG Y N, LIU F, XU X B, et al. Detection of plasmid-mediated tigecycline resistance gene tet(X4) in a Salmonella enterica serovar llandoff isolate[J]. Infectious Microbes Diseases, 2021, 3(4):198-204.
DOI
URL
|
| [33] |
WANG Y, XU X, JIA S, et al. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900-2023[J]. Nat Commun, 2025, 16(1):4611.
DOI
|