Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (3): 264-270.DOI: 10.3969/j.issn.1673-8640.2025.03.011
Previous Articles Next Articles
YU Xue, QI Aihong, LI Jinhui, QUAN Zhihui, LI Kui, QIU Yurong(
)
Received:2024-10-29
Revised:2025-01-10
Online:2025-03-30
Published:2025-04-10
CLC Number:
YU Xue, QI Aihong, LI Jinhui, QUAN Zhihui, LI Kui, QIU Yurong. Application role of an AI-patient based real time quality control intelligent monitoring platform for risk quality management of serum tumor markers[J]. Laboratory Medicine, 2025, 40(3): 264-270.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.03.011
| 项目 | 加权系数 | 截断范围 | 样本 数/例 | EWMA质控图控制限 | EWMA质控实际累积结果 | 质量目标(CV)/ % | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| 靶值 | 标准差 | CV/% | 累积均值 | 累积标准差 | 累积CV/% | |||||
| CA19-9 | 0.02 | 2.51~12.28 U·mL-1 | 9 597 | 6.28 U·mL-1 | 0.52 U·mL-1 | 8.33 | 8.26 U·mL-1 | 0.29 U·mL-1 | 4.56 | 8.33 |
| CEA | 0.02 | 1.77~6.45 ng·mL-1 | 24 129 | 3.07 ng·mL-1 | 0.26 ng·mL-1 | 8.33 | 3.07ng·mL-1 | 1.23 ng·mL-1 | 4.27 | 8.33 |
| CA125 | 0.02 | 10.0~40.0 U·mL-1 | 12 762 | 18.67 U·mL-1 | 1.55 U·mL-1 | 8.33 | 18.67 U·mL-1 | 0.84 U·mL-1 | 4.52 | 8.33 |
| AFP | 0.03 | 2.06~6.13 ng·mL-1 | 26 667 | 3.32 ng·mL-1 | 0.28 ng·mL-1 | 8.33 | 3.32 ng·mL-1 | 0.13 ng·mL-1 | 4.04 | 8.33 |
| CA15-3 | 0.02 | 2.40~19.2 U·mL-1 | 11 896 | 8.71 U·mL-1 | 0.73 U·mL-1 | 8.33 | 9.17 U·mL-1 | 0.47 U·mL-1 | 5.14 | 8.33 |
| t-PSA | 0.02 | 0.50~1.50 ng·mL-1 | 4 490 | 0.82 ng·mL-1 | 0.07 ng·mL-1 | 8.33 | 0.82 ng·mL-1 | 0.02 ng·mL-1 | 2.74 | 8.33 |
| 绝经前HE4 | 0.02 | 20.0~70.0 pmol·L-1 | 10 117 | 34.69 pmol·L-1 | 2.89 pmol·L-1 | 8.33 | 34.69 pmol·L-1 | 2.38 pmol·L-1 | 6.87 | 8.33 |
| 绝经后HE4 | 0.02 | 20.0~140.0 pmol·L-1 | 2 829 | 42.79 pmol·L-1 | 3.56 pmol·L-1 | 8.33 | 42.79 pmol·L-1 | 2.89 pmol·L-1 | 6.76 | 8.33 |
| f-PSA | 0.02 | 0.10~0.50 ng·mL-1 | 3 956 | 0.25 ng·mL-1 | 0.02 ng·mL-1 | 8.33 | 0.25 ng·mL-1 | 0.01 ng·mL-1 | 4.15 | 8.33 |
| 项目 | 加权系数 | 截断范围 | 样本 数/例 | EWMA质控图控制限 | EWMA质控实际累积结果 | 质量目标(CV)/ % | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| 靶值 | 标准差 | CV/% | 累积均值 | 累积标准差 | 累积CV/% | |||||
| CA19-9 | 0.02 | 2.51~12.28 U·mL-1 | 9 597 | 6.28 U·mL-1 | 0.52 U·mL-1 | 8.33 | 8.26 U·mL-1 | 0.29 U·mL-1 | 4.56 | 8.33 |
| CEA | 0.02 | 1.77~6.45 ng·mL-1 | 24 129 | 3.07 ng·mL-1 | 0.26 ng·mL-1 | 8.33 | 3.07ng·mL-1 | 1.23 ng·mL-1 | 4.27 | 8.33 |
| CA125 | 0.02 | 10.0~40.0 U·mL-1 | 12 762 | 18.67 U·mL-1 | 1.55 U·mL-1 | 8.33 | 18.67 U·mL-1 | 0.84 U·mL-1 | 4.52 | 8.33 |
| AFP | 0.03 | 2.06~6.13 ng·mL-1 | 26 667 | 3.32 ng·mL-1 | 0.28 ng·mL-1 | 8.33 | 3.32 ng·mL-1 | 0.13 ng·mL-1 | 4.04 | 8.33 |
| CA15-3 | 0.02 | 2.40~19.2 U·mL-1 | 11 896 | 8.71 U·mL-1 | 0.73 U·mL-1 | 8.33 | 9.17 U·mL-1 | 0.47 U·mL-1 | 5.14 | 8.33 |
| t-PSA | 0.02 | 0.50~1.50 ng·mL-1 | 4 490 | 0.82 ng·mL-1 | 0.07 ng·mL-1 | 8.33 | 0.82 ng·mL-1 | 0.02 ng·mL-1 | 2.74 | 8.33 |
| 绝经前HE4 | 0.02 | 20.0~70.0 pmol·L-1 | 10 117 | 34.69 pmol·L-1 | 2.89 pmol·L-1 | 8.33 | 34.69 pmol·L-1 | 2.38 pmol·L-1 | 6.87 | 8.33 |
| 绝经后HE4 | 0.02 | 20.0~140.0 pmol·L-1 | 2 829 | 42.79 pmol·L-1 | 3.56 pmol·L-1 | 8.33 | 42.79 pmol·L-1 | 2.89 pmol·L-1 | 6.76 | 8.33 |
| f-PSA | 0.02 | 0.10~0.50 ng·mL-1 | 3 956 | 0.25 ng·mL-1 | 0.02 ng·mL-1 | 8.33 | 0.25 ng·mL-1 | 0.01 ng·mL-1 | 4.15 | 8.33 |
| 项目 | 加权 系数 | 截断范围 | 样本 数/例 | 最优参数和性能评价结果 | 临床应用中的报警结果和原因 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Ped/% | Pfr/% | ANPed | FPR/% | FNR/% | 预警次数/次 | 预警类型 | 预警原因 | ||||
| CA19-9 | 0.02 | 2.51~12.28 U·mL-1 | 9 597 | 100 | 0 | 12 | 0.5 | 3.5 | 0 | ||
| CEA | 0.02 | 1.77~6.45 ng·mL-1 | 24 129 | 100 | 0 | 8 | 1.5 | 0.2 | 0 | ||
| CA125 | 0.02 | 10.0~40.0 U·mL-1 | 12 762 | 100 | 0 | 10 | 4.0 | 0.9 | 0 | ||
| AFP | 0.03 | 2.06~6.13 ng·mL-1 | 26 667 | 100 | 0 | 10 | 3.0 | 4.5 | 0 | ||
| CA15-3 | 0.02 | 2.40~19.2 U·mL-1 | 11 896 | 100 | 0 | 7 | 2.5 | 0.4 | 4 | 真报警 | 更换新批号校准品 |
| t-PSA | 0.02 | 0.50~1.50 ng·mL-1 | 4 490 | 100 | 0 | 7 | 1.0 | 0.7 | 0 | ||
| 绝经前HE4 | 0.02 | 20.0~70.0 pmol·L-1 | 10 117 | 100 | 0 | 11 | 2.0 | 4.0 | 1 | 真报警 | 使用新批次检测试剂 |
| 绝经后HE4 | 0.02 | 20.0~140 pmol·L-1 | 2 829 | 100 | 0 | 7 | 0.1 | 0.8 | 3 | 真报警 | 使用新批次检测试剂 |
| f-PSA | 0.02 | 0.10~0.50 ng·mL-1 | 3 956 | 100 | 0 | 9 | 0.3 | 1.0 | 0 | ||
| 项目 | 加权 系数 | 截断范围 | 样本 数/例 | 最优参数和性能评价结果 | 临床应用中的报警结果和原因 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Ped/% | Pfr/% | ANPed | FPR/% | FNR/% | 预警次数/次 | 预警类型 | 预警原因 | ||||
| CA19-9 | 0.02 | 2.51~12.28 U·mL-1 | 9 597 | 100 | 0 | 12 | 0.5 | 3.5 | 0 | ||
| CEA | 0.02 | 1.77~6.45 ng·mL-1 | 24 129 | 100 | 0 | 8 | 1.5 | 0.2 | 0 | ||
| CA125 | 0.02 | 10.0~40.0 U·mL-1 | 12 762 | 100 | 0 | 10 | 4.0 | 0.9 | 0 | ||
| AFP | 0.03 | 2.06~6.13 ng·mL-1 | 26 667 | 100 | 0 | 10 | 3.0 | 4.5 | 0 | ||
| CA15-3 | 0.02 | 2.40~19.2 U·mL-1 | 11 896 | 100 | 0 | 7 | 2.5 | 0.4 | 4 | 真报警 | 更换新批号校准品 |
| t-PSA | 0.02 | 0.50~1.50 ng·mL-1 | 4 490 | 100 | 0 | 7 | 1.0 | 0.7 | 0 | ||
| 绝经前HE4 | 0.02 | 20.0~70.0 pmol·L-1 | 10 117 | 100 | 0 | 11 | 2.0 | 4.0 | 1 | 真报警 | 使用新批次检测试剂 |
| 绝经后HE4 | 0.02 | 20.0~140 pmol·L-1 | 2 829 | 100 | 0 | 7 | 0.1 | 0.8 | 3 | 真报警 | 使用新批次检测试剂 |
| f-PSA | 0.02 | 0.10~0.50 ng·mL-1 | 3 956 | 100 | 0 | 9 | 0.3 | 1.0 | 0 | ||
| [1] | 徐菱遥, 江南, 赵俊波, 等. 血清HSP90α联合lncRNA SNHG5与常规血清肿瘤标志物诊断早期结直肠癌的价值[J]. 海南医学, 2024, 35(19):2792-2797. |
| [2] | ZHOU H, WANG X C, YUAN B B, et al. Clinical value of combining serum tumor marker detection with fecal occult blood testing in diagnosing colorectal cancer[J]. J Physiol Pharmacol, 2022, 73(3):443-449. |
| [3] | ZHANG Y, WANG H L, XIE Y H, et al. Practical application of the patient data-based quality control method:the potassium example[J]. Biochem Med, 2024, 34(1):010901. |
| [4] | LORDE N, MAHAPATRA S, KALARIA T. Machine learning for patient-based real-time quality control(PBRTQC),analytical and preanalytical error detection in clinical laboratory[J]. Diagnostics(Basel), 2024, 14(16):1808. |
| [5] | BADRICK T, BIETENBECK A, KATAYEV A, et al. Implementation of patient-based real-time quality control[J]. Crit Rev Clin Lab Sci, 2020, 57(8):532-547. |
| [6] | YANG X, CHEN Q, PAN Z, et al. Application of patient-based real-time quality control based on artificial intelligence monitoring platform in continuously quality risk monitoring of down syndrome serum screening[J]. J Clin Lab Anal, 2024, 38(5):e25019. |
| [7] |
LOH T P, BIETENBECK A, CERVINSKI M A, et al. Recommendation for performance verification of patient-based real-time quality control[J]. Clin Chem Lab Med, 2020, 58(8):1205-1213.
DOI PMID |
| [8] | NG D, POLITO F A, CERVINSKI M A. Optimization of a moving averages program using a simulated annealing algorithm:the goal is to monitor the process not the patients[J]. Clin Chem, 2016, 62(10):1361-1371. |
| [9] |
ROSSUM H H V, KEMPERMAN H. Implementation and application of moving average as continuous analytical quality control instrument demonstrated for 24 routine chemistry assays[J]. Clin Chem Lab Med, 2017, 55(8):1142-1151.
DOI PMID |
| [10] | 温冬梅, 郝晓柯. 基于患者数据的实时质量控制建立原则及研究进展[J]. 中华检验医学杂志, 2022, 45(1): 82-86. |
| [11] | 李萍, 李园园, 黄亨建, 等. 患者数据质控在定义室内质控分析批长度中的应用[J]. 临床检验杂志, 2009, 27(3):228-232. |
| [12] |
杨帆, 董丹凤, 陆怡德. 患者数据指数加权移动平均法在血清离子项目室内质量控制中的应用[J]. 检验医学, 2021, 36(9):962-968.
DOI |
| [13] |
LOH T P, CERVINSKI M A, KATAYEV A, et al. Recommendations for laboratory informatics specifications needed for the application of patient-based real time quality control[J]. Clin Chim Acta, 2019, 495:625-629.
DOI PMID |
| [14] | 中华人民共和国国家卫生健康委员会. WS/T 641—2018 临床检验定量测定室内质量控制[S]. 北京: 中华人民共和国国家卫生健康委员会, 2018. |
| [15] | LU Y, YANG F, WEN D, et al. Assessment of patient based real-time quality control on comparative assays for common clinical analytes[J]. J Clin Lab Anal, 2022, 36(9):e24651. |
| [16] |
徐黎明, 王瑾, 袁梦娇, 等. 患者数据指数加权移动平均法在区域检验中心MCV、MCH、MCHC项目稳定性和可比性监测中的应用[J]. 检验医学, 2023, 38(11):1098-1100.
DOI |
| [1] | GONG Xiaolin, DENG Kun, WU Jun, REN Chuanli, XU Songxiao, LI Shengjie, LI Bo, YANG Dagan, SHEN Han, ZHANG Yi, CHEN Ming, WU Yongkang, LUO Huaichao, YUAN Xu, XU Huaguo, GONG Qian, LI Xin, GUAN Ming. AI technology reshaping laboratory medicine from automation to intelligent decision-making [J]. Laboratory Medicine, 2025, 40(5): 413-420. |
| [2] | YU Jiajie, ZHANG Zhizhi, LUO Qingqiong, KE Xing. Predicting early colorectal tumor risk using a deep learning model based on multiple serum tumor markers [J]. Laboratory Medicine, 2025, 40(3): 253-258. |
| [3] | YANG Dagan. Application and prospect of large language models in laboratory medicine [J]. Laboratory Medicine, 2025, 40(11): 1042-1046. |
| [4] | CHEN Zhijin, WANG Yuting, ZHENG Haiyin, LIU Qingzhong. Preliminary establishment of the reference range for cytokeratin 19 fragment and analysis of related factors [J]. Laboratory Medicine, 2025, 40(11): 1070-1074. |
| [5] | QI Xinglun, YAO Yifan, SHEN Shushi, YANG Zheng, ZHU Junjie, FAN Lina, YANG Dagan. Performance evaluation of different large language models in interpreting tumor marker determination reports [J]. Laboratory Medicine, 2025, 40(11): 1075-1081. |
| [6] | WANG Chi, LIU Shaomei, LI Mianyang. Research progress on artificial intelligence in assisting diagnosis of bone marrow cell morphology [J]. Laboratory Medicine, 2025, 40(1): 8-14. |
| [7] | LEI Ming, ZHAI Li, WEI Ying, LIN Yichen, GUO Mengyue. Application of nomogram model based on clinical characteristics and serum tumor markers in differential diagnosis of benign and malignant lung lesions [J]. Laboratory Medicine, 2024, 39(10): 956-962. |
| [8] | JIANG Haoqin, XU Qianqian, XU Liming, GUAN Ming. Homogenization management and practice of clinical blood and body fluid determinations [J]. Laboratory Medicine, 2024, 39(1): 95-99. |
| [9] | GAO Feng. Research progress of new tumor molecular markers in the age of precision medicine:from accurate diagnosis to precision chemotherapy [J]. Laboratory Medicine, 2022, 37(4): 309-312. |
| [10] | XU Runhao, ZOU Chen, CAO Yun, CHEN Feng, LIU Yijing, ZHANG Shulin, ZHANG Jie. Roles of serum amino acid determinations in the diagnosis of early non-small-cell lung cancer [J]. Laboratory Medicine, 2022, 37(12): 1157-1163. |
| [11] | XIONG Zhongbo, WANG Lei, YIN Beiqi, DAI Yue, WEI Xiaoqing, LU Pei. Clinical roles of SAA and CRP in pathological staging and metastasis of gastrointestinal cancer [J]. Laboratory Medicine, 2022, 37(1): 51-55. |
| [12] | MAN Xianfeng, HE Xiaoting, ZHANG Ying, YU Weiwei, WANG Qi, YIN Hanwei, WANG Runjie. Application of thioredoxin reductase in monitoring the curative effect of lung cancer [J]. Laboratory Medicine, 2022, 37(1): 56-59. |
| [13] | JING Jie, WANG Beilei, LIU Shanrong. Explainable artificial intelligence in disease diagnosis and treatment [J]. Laboratory Medicine, 2021, 36(9): 976-980. |
| [14] | XU Runhao, ZOU Chen, ZHANG Jie, LI Min, ZHANG Shulin. Application of serum bile acid spectrum in the differential diagnosis of pneumonia and lung cancer [J]. Laboratory Medicine, 2021, 36(1): 1-7. |
| [15] | GAO Feng. Research improvement of the basis and transformation of tumor markers in clinical laboratories [J]. Laboratory Medicine, 2019, 34(2): 95-97. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||