Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (12): 1216-1221.DOI: 10.3969/j.issn.1673-8640.2025.12.013
Received:2024-07-09
Revised:2025-02-06
Online:2025-12-30
Published:2025-12-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.12.013
| 组别 | 年龄/岁 | 性别 | 体重指数/(kg·m-2) | 病程/年 | 吸烟史 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 男/[例(%)] | 女/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||||
| 对照组 | 53.46±6.07 | 25(50.00) | 25(50.00) | 24.23±2.20 | 24(48.00) | 26(52.00) | ||||
| IgA肾病组 | 54.31±5.47 | 26(52.00) | 24(48.00) | 24.33±2.19 | 6.76±2.52 | 22(44.00) | 28(56.00) | |||
| 正常白蛋白尿组 | 53.66±6.14 | 26(52.00) | 24(48.00) | 23.33±2.35 | 5.72±2.33△ | 27(54.00) | 23(46.00) | |||
| 微量白蛋白尿组 | 53.31±5.38 | 25(50.00) | 25(50.00) | 23.98±2.37 | 9.68±4.64*△ | 25(50.00) | 25(50.00) | |||
| 临床白蛋白尿组 | 54.08±5.75 | 25(50.00) | 25(50.00) | 23.64±2.18 | 15.92±6.83*#△ | 26(52.00) | 24(48.00) | |||
| 统计值 | 0.266 | 0.096 | 1.396 | 52.564 | 1.184 | |||||
| P值 | 0.900 | 0.999 | 0.152 | <0.001 | 0.881 | |||||
| 组别 | 饮酒史 | 高血压史 | 高血脂史 | |||||||
| 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||
| 对照组 | 22(44.00) | 28(56.00) | 24(48.00) | 26(52.00) | 23(46.00) | 27(54.00) | ||||
| IgA肾病组 | 23(46.00) | 27(54.00) | 21(42.00) | 29(58.00) | 21(42.00) | 29(58.00) | ||||
| 正常白蛋白尿组 | 24(48.00) | 26(52.00) | 26(52.00) | 24(48.00) | 25(50.00) | 25(50.00) | ||||
| 微量白蛋白尿组 | 27(54.00) | 23(46.00) | 22(44.00) | 28(56.00) | 22(44.00) | 28(56.00) | ||||
| 临床白蛋白尿组 | 25(50.00) | 25(50.00) | 27(54.00) | 23(46.00) | 26(52.00) | 24(48.00) | ||||
| 统计值 | 1.185 | 2.083 | 1.382 | |||||||
| P值 | 0.881 | 0.720 | 0.847 | |||||||
| 组别 | 肺结核史 | 心脏病史 | 脑卒中史 | |||||||
| 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||
| 对照组 | 25(50.00) | 25(50.00) | 29(58.00) | 21(42.00) | 22(44.00) | 28(56.00) | ||||
| IgA肾病组 | 22(44.00) | 28(56.00) | 23(46.00) | 27(54.00) | 22(44.00) | 28(56.00) | ||||
| 正常白蛋白尿组 | 28(56.00) | 22(44.00) | 27(54.00) | 23(46.00) | 24(48.00) | 26(52.00) | ||||
| 微量白蛋白尿组 | 23(46.00) | 27(54.00) | 23(46.00) | 27(54.00) | 27(54.00) | 23(46.00) | ||||
| 临床白蛋白尿组 | 24(48.00) | 26(52.00) | 24(48.00) | 26(52.00) | 23(46.00) | 27(54.00) | ||||
| 统计值 | 1.697 | 2.304 | 1.380 | |||||||
| P值 | 0.791 | 0.680 | 0.848 | |||||||
| 组别 | 年龄/岁 | 性别 | 体重指数/(kg·m-2) | 病程/年 | 吸烟史 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 男/[例(%)] | 女/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||||
| 对照组 | 53.46±6.07 | 25(50.00) | 25(50.00) | 24.23±2.20 | 24(48.00) | 26(52.00) | ||||
| IgA肾病组 | 54.31±5.47 | 26(52.00) | 24(48.00) | 24.33±2.19 | 6.76±2.52 | 22(44.00) | 28(56.00) | |||
| 正常白蛋白尿组 | 53.66±6.14 | 26(52.00) | 24(48.00) | 23.33±2.35 | 5.72±2.33△ | 27(54.00) | 23(46.00) | |||
| 微量白蛋白尿组 | 53.31±5.38 | 25(50.00) | 25(50.00) | 23.98±2.37 | 9.68±4.64*△ | 25(50.00) | 25(50.00) | |||
| 临床白蛋白尿组 | 54.08±5.75 | 25(50.00) | 25(50.00) | 23.64±2.18 | 15.92±6.83*#△ | 26(52.00) | 24(48.00) | |||
| 统计值 | 0.266 | 0.096 | 1.396 | 52.564 | 1.184 | |||||
| P值 | 0.900 | 0.999 | 0.152 | <0.001 | 0.881 | |||||
| 组别 | 饮酒史 | 高血压史 | 高血脂史 | |||||||
| 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||
| 对照组 | 22(44.00) | 28(56.00) | 24(48.00) | 26(52.00) | 23(46.00) | 27(54.00) | ||||
| IgA肾病组 | 23(46.00) | 27(54.00) | 21(42.00) | 29(58.00) | 21(42.00) | 29(58.00) | ||||
| 正常白蛋白尿组 | 24(48.00) | 26(52.00) | 26(52.00) | 24(48.00) | 25(50.00) | 25(50.00) | ||||
| 微量白蛋白尿组 | 27(54.00) | 23(46.00) | 22(44.00) | 28(56.00) | 22(44.00) | 28(56.00) | ||||
| 临床白蛋白尿组 | 25(50.00) | 25(50.00) | 27(54.00) | 23(46.00) | 26(52.00) | 24(48.00) | ||||
| 统计值 | 1.185 | 2.083 | 1.382 | |||||||
| P值 | 0.881 | 0.720 | 0.847 | |||||||
| 组别 | 肺结核史 | 心脏病史 | 脑卒中史 | |||||||
| 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | 有/[例(%)] | 无/[例(%)] | |||||
| 对照组 | 25(50.00) | 25(50.00) | 29(58.00) | 21(42.00) | 22(44.00) | 28(56.00) | ||||
| IgA肾病组 | 22(44.00) | 28(56.00) | 23(46.00) | 27(54.00) | 22(44.00) | 28(56.00) | ||||
| 正常白蛋白尿组 | 28(56.00) | 22(44.00) | 27(54.00) | 23(46.00) | 24(48.00) | 26(52.00) | ||||
| 微量白蛋白尿组 | 23(46.00) | 27(54.00) | 23(46.00) | 27(54.00) | 27(54.00) | 23(46.00) | ||||
| 临床白蛋白尿组 | 24(48.00) | 26(52.00) | 24(48.00) | 26(52.00) | 23(46.00) | 27(54.00) | ||||
| 统计值 | 1.697 | 2.304 | 1.380 | |||||||
| P值 | 0.791 | 0.680 | 0.848 | |||||||
| 组别 | Chao指数 | Ace指数 | Shannon指数 | Simpson指数 |
|---|---|---|---|---|
| 对照组 | 87.46±15.07 | 86.23±19.20 | 1.58±0.15 | 0.22±0.05 |
| IgA肾病组 | 71.21±11.64* | 74.21±13.54* | 1.49±0.13* | 0.26±0.05* |
| 正常白蛋白尿组 | 75.66±12.14* | 76.33±15.35* | 1.51±0.13* | 0.25±0.05* |
| 微量白蛋白尿组 | 64.31±10.38*#▲ | 68.98±12.37*#▲ | 1.44±0.14*# | 0.28±0.06*# |
| 临床白蛋白尿组 | 54.08±8.75*#△▲ | 53.64±8.18*#△▲ | 1.29±0.13*#△▲ | 0.35±0.08*#△▲ |
| F值 | 56.056 | 35.499 | 31.708 | 33.857 |
| P值 | <0.001 | <0.001 | <0.001 | <0.001 |
| 组别 | Chao指数 | Ace指数 | Shannon指数 | Simpson指数 |
|---|---|---|---|---|
| 对照组 | 87.46±15.07 | 86.23±19.20 | 1.58±0.15 | 0.22±0.05 |
| IgA肾病组 | 71.21±11.64* | 74.21±13.54* | 1.49±0.13* | 0.26±0.05* |
| 正常白蛋白尿组 | 75.66±12.14* | 76.33±15.35* | 1.51±0.13* | 0.25±0.05* |
| 微量白蛋白尿组 | 64.31±10.38*#▲ | 68.98±12.37*#▲ | 1.44±0.14*# | 0.28±0.06*# |
| 临床白蛋白尿组 | 54.08±8.75*#△▲ | 53.64±8.18*#△▲ | 1.29±0.13*#△▲ | 0.35±0.08*#△▲ |
| F值 | 56.056 | 35.499 | 31.708 | 33.857 |
| P值 | <0.001 | <0.001 | <0.001 | <0.001 |
| 变量 | DN严重程度 | ||
|---|---|---|---|
| 回归 系数 | OR值(95%CI①) | P值 | |
| 模型1 | |||
| Chao指数 | -0.483 | 0.617(0.383~0.751) | 0.035 |
| Ace指数 | -0.372 | 0.689(0.254~0.727) | 0.012 |
| Shannon指数 | -0.486 | 0.615(0.326~0.688) | 0.034 |
| Simpson指数 | 0.527 | 1.694(1.156~3.278) | 0.022 |
| eGFR | -0.387 | 0.679(0.324~0.789) | 0.025 |
| 模型2 | |||
| Chao指数 | -0.475 | 0.622(0.474~0.742) | 0.024 |
| Ace指数 | -0.364 | 0.695(0.153~0.726) | 0.010 |
| Shannon指数 | -0.471 | 0.624(0.334~0.671) | 0.032 |
| Simpson指数 | 0.513 | 1.670(1.109~3.176) | 0.017 |
| eGFR | -0.379 | 0.685(0.234~0.875) | 0.021 |
| 模型3 | |||
| Chao指数 | -0.472 | 0.624(0.434~0.775) | 0.024 |
| Ace指数 | -0.354 | 0.702(0.257~0.824) | 0.010 |
| Shannon指数 | -0.468 | 0.626(0.424~0.745) | 0.032 |
| Simpson指数 | 0.507 | 1.660(1.114~3.164) | 0.017 |
| eGFR | -0.413 | 0.662(0.012~0.678) | 0.007 |
| 模型4 | |||
| Chao指数 | -0.469 | 0.626(0.539~0.748) | 0.012 |
| Ace指数 | -0.357 | 0.700(0.147~0.814) | 0.006 |
| Shannon指数 | -0.462 | 0.630(0.308~0.797) | 0.019 |
| Simpson指数 | 0.506 | 1.659(1.115~3.252) | 0.013 |
| eGFR | -0.407 | 0.666(0.217~0.789) | 0.008 |
| 变量 | DN严重程度 | ||
|---|---|---|---|
| 回归 系数 | OR值(95%CI①) | P值 | |
| 模型1 | |||
| Chao指数 | -0.483 | 0.617(0.383~0.751) | 0.035 |
| Ace指数 | -0.372 | 0.689(0.254~0.727) | 0.012 |
| Shannon指数 | -0.486 | 0.615(0.326~0.688) | 0.034 |
| Simpson指数 | 0.527 | 1.694(1.156~3.278) | 0.022 |
| eGFR | -0.387 | 0.679(0.324~0.789) | 0.025 |
| 模型2 | |||
| Chao指数 | -0.475 | 0.622(0.474~0.742) | 0.024 |
| Ace指数 | -0.364 | 0.695(0.153~0.726) | 0.010 |
| Shannon指数 | -0.471 | 0.624(0.334~0.671) | 0.032 |
| Simpson指数 | 0.513 | 1.670(1.109~3.176) | 0.017 |
| eGFR | -0.379 | 0.685(0.234~0.875) | 0.021 |
| 模型3 | |||
| Chao指数 | -0.472 | 0.624(0.434~0.775) | 0.024 |
| Ace指数 | -0.354 | 0.702(0.257~0.824) | 0.010 |
| Shannon指数 | -0.468 | 0.626(0.424~0.745) | 0.032 |
| Simpson指数 | 0.507 | 1.660(1.114~3.164) | 0.017 |
| eGFR | -0.413 | 0.662(0.012~0.678) | 0.007 |
| 模型4 | |||
| Chao指数 | -0.469 | 0.626(0.539~0.748) | 0.012 |
| Ace指数 | -0.357 | 0.700(0.147~0.814) | 0.006 |
| Shannon指数 | -0.462 | 0.630(0.308~0.797) | 0.019 |
| Simpson指数 | 0.506 | 1.659(1.115~3.252) | 0.013 |
| eGFR | -0.407 | 0.666(0.217~0.789) | 0.008 |
| 项目 | Chao指数 | Ace指数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 正常白蛋白尿 | 0.536(0.492~0.748) | 0.004 | 0.527(0.486~0.733) | 0.002 | 0.687(0.589~0.796) | 0.015 | 0.673(0.577~0.781) | 0.008 | |
| 微量白蛋白尿 | 0.628(0.514~0.755) | 0.013 | 0.616(0.502~0.747) | 0.008 | 0.724(0.623~0.815) | 0.021 | 0.715(0.610~0.802) | 0.017 | |
| 临床白蛋白尿 | 0.704(0.626~0.854) | 0.028 | 0.687(0.619~0.839) | 0.016 | 0.786(0.679~0.868) | 0.036 | 0.777(0.664~0.851) | 0.025 | |
| 项目 | Shannon指数 | Simpson指数 | |||||||
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 正常白蛋白尿 | 0.617(0.539~0.782) | 0.008 | 0.602(0.5228~0.773) | 0.006 | 1.287(1.116~1.545) | 0.037 | 1.255(1.164~1.408) | 0.028 | |
| 微量白蛋白尿 | 0.653(0.572~0.761) | 0.016 | 0.641(0.568~0.746) | 0.013 | 1.139(1.048~1.377) | 0.026 | 1.126(1.105~1.341) | 0.019 | |
| 临床白蛋白尿 | 0.758(0.645~0.857) | 0.032 | 0.745(0.636~0.848) | 0.025 | 1.025(1.013~1.282) | 0.014 | 1.011(1.004~1.176) | 0.004 | |
| 项目 | Chao指数 | Ace指数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 正常白蛋白尿 | 0.536(0.492~0.748) | 0.004 | 0.527(0.486~0.733) | 0.002 | 0.687(0.589~0.796) | 0.015 | 0.673(0.577~0.781) | 0.008 | |
| 微量白蛋白尿 | 0.628(0.514~0.755) | 0.013 | 0.616(0.502~0.747) | 0.008 | 0.724(0.623~0.815) | 0.021 | 0.715(0.610~0.802) | 0.017 | |
| 临床白蛋白尿 | 0.704(0.626~0.854) | 0.028 | 0.687(0.619~0.839) | 0.016 | 0.786(0.679~0.868) | 0.036 | 0.777(0.664~0.851) | 0.025 | |
| 项目 | Shannon指数 | Simpson指数 | |||||||
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 正常白蛋白尿 | 0.617(0.539~0.782) | 0.008 | 0.602(0.5228~0.773) | 0.006 | 1.287(1.116~1.545) | 0.037 | 1.255(1.164~1.408) | 0.028 | |
| 微量白蛋白尿 | 0.653(0.572~0.761) | 0.016 | 0.641(0.568~0.746) | 0.013 | 1.139(1.048~1.377) | 0.026 | 1.126(1.105~1.341) | 0.019 | |
| 临床白蛋白尿 | 0.758(0.645~0.857) | 0.032 | 0.745(0.636~0.848) | 0.025 | 1.025(1.013~1.282) | 0.014 | 1.011(1.004~1.176) | 0.004 | |
| 项目 | Chao指数 | Ace指数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 低eGFR | 1.256(1.164~2.648) | 0.018 | 1.795(1.633~2.794) | 0.019 | 1.283(1.117~1.546) | 0.023 | 1.507(1.046~1.645) | 0.001 | |
| 中eGFR | 1.124(1.105~2.641) | 0.029 | 1.531(1.141~2.357) | 0.027 | 1.109(1.044~1.964) | 0.012 | 1.505(1.083~2.631) | 0.005 | |
| 高eGFR | 1.211(1.114~1.965) | 0.013 | 1.635(1.313~2.443) | 0.015 | 1.524(1.017~2.678) | 0.008 | 1.336(1.011~2.364) | 0.012 | |
| 项目 | Shannon指数 | Simpson指数 | |||||||
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 低eGFR | 1.523(1.321~1.652) | 0.015 | 1.815(1.421~1.921) | 0.011 | 0.616(0.532~0.786) | 0.006 | 0.612(0.5224~0.776) | 0.007 | |
| 中eGFR | 1.529(1.391~1.715) | 0.014 | 1.625(1.183~1.925) | 0.011 | 0.651(0.571~0.861) | 0.013 | 0.611(0.468~0.756) | 0.017 | |
| 高eGFR | 1.537(1.175~2.431) | 0.012 | 1.563(1.101~1.882) | 0.015 | 0.658(0.145~0.752) | 0.031 | 0.735(0.536~0.835) | 0.021 | |
| 项目 | Chao指数 | Ace指数 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 低eGFR | 1.256(1.164~2.648) | 0.018 | 1.795(1.633~2.794) | 0.019 | 1.283(1.117~1.546) | 0.023 | 1.507(1.046~1.645) | 0.001 | |
| 中eGFR | 1.124(1.105~2.641) | 0.029 | 1.531(1.141~2.357) | 0.027 | 1.109(1.044~1.964) | 0.012 | 1.505(1.083~2.631) | 0.005 | |
| 高eGFR | 1.211(1.114~1.965) | 0.013 | 1.635(1.313~2.443) | 0.015 | 1.524(1.017~2.678) | 0.008 | 1.336(1.011~2.364) | 0.012 | |
| 项目 | Shannon指数 | Simpson指数 | |||||||
| OR①(95%CI) | P值 | OR②(95%CI) | P值 | OR①(95%CI) | P值 | OR②(95%CI) | P值 | ||
| 低eGFR | 1.523(1.321~1.652) | 0.015 | 1.815(1.421~1.921) | 0.011 | 0.616(0.532~0.786) | 0.006 | 0.612(0.5224~0.776) | 0.007 | |
| 中eGFR | 1.529(1.391~1.715) | 0.014 | 1.625(1.183~1.925) | 0.011 | 0.651(0.571~0.861) | 0.013 | 0.611(0.468~0.756) | 0.017 | |
| 高eGFR | 1.537(1.175~2.431) | 0.012 | 1.563(1.101~1.882) | 0.015 | 0.658(0.145~0.752) | 0.031 | 0.735(0.536~0.835) | 0.021 | |
| [1] | LI X, LU L, HOU W, et al. Epigenetics in the pathogenesis of diabetic nephropathy[J]. Acta Biochim Biophys Sin(Shanghai), 2022, 54(2):163-172. |
| [2] |
GUPTA S, DOMINGUEZ M, GOLESTANEH L. Diabetic kidney disease:an update[J]. Med Clin North Am, 2023, 107(4):689-705.
DOI URL |
| [3] | TIAN E, WANG F, ZHAO L, et al. The pathogenic role of intestinal flora metabolites in diabetic nephropathy[J]. Front Physiol, 2023,14:1231621. |
| [4] | YAN S, WANG H, FENG B, et al. Causal relationship between gut microbiota and diabetic nephropathy:a two-sample Mendelian randomization study[J]. Front Immunol, 2024,15:1332757. |
| [5] | 阿孜古丽·买合买提, 米日古丽·吾木哈斯木, 李雪梅, 等. 基于肠道微生物学及代谢组学研究2型糖尿病患者肠道菌群结构及血清代谢产物的特征[J]. 广东医学, 2024, 45(2):139-144. |
| [6] | 中华医学会糖尿病学分会微血管并发症学组, 薛耀明, 朱大龙, 等. 中国糖尿病肾脏病防治指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(8):762-784. |
| [7] | SAMSU N. Diabetic nephropathy:challenges in pathogenesis,diagnosis,and treatment[J]. Biomed Res Int, 2021,2021:1497449. |
| [8] | HU Q, JIANG L, YAN Q, et al. A natural products solution to diabetic nephropathy therapy[J]. Pharmacol Ther, 2023,241:108314. |
| [9] | HERNANDEZ L F, EGUCHI N, WHALEY D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci(Schol Ed), 2022, 14(2):14. |
| [10] | HAN C, SHEN Z, CUI T, et al. Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the "gut-kidney axis"[J]. J Ethnopharmacol, 2023,307:116257. |
| [11] | DENG L, YANG Y, XU G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(12):159234. |
| [12] |
ZHANG L, WANG Z, ZHANG X, et al. Alterations of the gut microbiota in patients with diabetic nephropathy[J]. Microbiol Spectr, 2022, 10(4):e0032422.
DOI URL |
| [13] |
YANG M, CHEN W, HE L, et al. Intermittent fasting-a healthy dietary pattern for diabetic nephropathy[J]. Nutrients, 2022, 14(19):3995.
DOI URL |
| [14] | GAO L W, YANG X Y, YU Y F, et al. Bibliometric analysis of intestinal microbiota in diabetic nephropathy[J]. Eur Rev Med Pharmacol Sci, 2023, 27(18):8812-8828. |
| [15] | YANG G, WEI J, LIU P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism, 2021,117:154712. |
| [16] |
FAN G, CAO F, KUANG T, et al. Alterations in the gut virome are associated with type 2 diabetes and diabetic nephropathy[J]. Gut Microbes, 2023, 15(1):2226925.
DOI URL |
| [17] |
ZAKY A, GLASTRAS S J, WONG M Y W, et al. The role of the gut microbiome in diabetes and obesity-related kidney disease[J]. Int J Mol Sci, 2021, 22(17):9641.
DOI URL |
| [18] | LUO L, LUO J, CAI Y, et al. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy[J]. Pharmacol Res, 2022,183:106367. |
| [19] |
IATCU C O, STEEN A, COVASA M. Gut microbiota and complications of type-2 diabetes[J]. Nutrients, 2021, 14(1):166.
DOI URL |
| [20] | ROUT P, JIALAL I. Diabetic nephropathy[M]. Treasure Island(FL): StatPearls Publishing, 2025. |
| [21] | VERVLOET M G, SMULDERS Y M. Estimating glomerular filtration rate[J]. Ned Tijdschr Geneeskd, 2024,168:D8198. |
| [1] | . [J]. Laboratory Medicine, 2025, 40(9): 914-917. |
| [2] | LIU Shanfeng, GAO Yun, WANG Limin, WANG Ping. Accuracy analysis of urine protein and urine cast of hospitalized liver cirrhosis patients [J]. Laboratory Medicine, 2025, 40(3): 287-293. |
| [3] | WANG Xiaomei, LUO Chao, TIE Yang, HE Yong, YANG Xikui, LIU Yalin, SUN Yue, WANG Fugang, HE He. Application of random urine uric acid/creatinine in classification of hyperuricemia patients in Karamay [J]. Laboratory Medicine, 2024, 39(9): 859-864. |
| [4] | WANG Limin, LIU Shanfeng, WANG Ping. Positive rate of urine cast after heart transplantation and its influencing factors [J]. Laboratory Medicine, 2024, 39(9): 900-904. |
| [5] | . [J]. Laboratory Medicine, 2024, 39(7): 721-722. |
| [6] | . [J]. Laboratory Medicine, 2020, 35(1): 92-94. |
| [7] | YU Peijuan, ZHANG Gaolin, YAN Ruhong, FENG Ping, SUN Lanyun, ZHU Xueming, WANG Jinghua. Urinary sediment analysis combined with serum procalcitonin determination in the diagnosis of urinary tract infection [J]. Laboratory Medicine, 2018, 33(4): 299-304. |
| [8] | HUANG Yan, XU Xiaorong, ZHANG Jue. Performance evaluation of Cobio Palio 300 urine biochemical analyzer for the determinations of 5 urinary micro-proteins [J]. Laboratory Medicine, 2015, 30(6): 603-606. |
| [9] | . [J]. , 2011, 26(06): 413-415. |
| [10] | . [J]. , 2011, 26(03): 168-171. |
| [11] | CHEN Guoqiang;CHEN Feng;WANG Sumei. The influence of urine specimen storage time on the determination results of RBC and WBC in urine [J]. , 2011, 26(03): 166-168. |
| [12] | HANG Jianfeng;SUN Zhaohui;SHI Yuling;FU Yuwen;YANG Zhiyi;LUO Jian. Clinical application analysis on the performance of Sysmex UF-1000i automated urinary sediment analyzer [J]. , 2011, 26(02): 108-110. |
| [13] | HU Xiaozhou;CUI Yanmei;WANG Xiaolin;ZHANG Jie. Comparison on three methods in the examination of urine sediment [J]. , 2011, 26(02): 100-104. |
| [14] | . [J]. , 2010, 25(11): 909-913. |
| [15] | DING Bangsheng;KONG Jianxin;MA Xiaoling;ZHU Xinyou. Comparison on the results of two urinary sediment automatic analyzers [J]. , 2010, 25(08): 615-617. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||