检验医学 ›› 2025, Vol. 40 ›› Issue (11): 1035-1041.DOI: 10.3969/j.issn.1673-8640.2025.11.001

• 专家论坛 •    下一篇

从通用到个性化:间接法建立参考区间的演进与前沿展望

熊赢, 郭玮()   

  1. 复旦大学附属中山医院检验科,上海 200032
  • 收稿日期:2025-09-25 修回日期:2025-10-30 出版日期:2025-11-30 发布日期:2025-12-12
  • 通讯作者: 郭 玮,E-mail:guo.wei@zs-hospital.sh.cn
  • 作者简介:熊 赢,女,1996年生,硕士,技师,主要从事临床生化检验和检验大数据分析工作。
  • 基金资助:
    国家自然科学基金面上项目(82172348);国家自然科学基金面上项目(82473063);国家重点研发计划项目(2022YFC3602302);国家重点研发计划项目(2022YFC3602301)

From generic to personalized:the evolution and frontiers of indirect methods for establishing reference interval

XIONG Ying, GUO Wei()   

  1. Department of Clinical Laboratory,Zhongshan Hospital,Fudan University,Shanghai 200032,China
  • Received:2025-09-25 Revised:2025-10-30 Online:2025-11-30 Published:2025-12-12

摘要:

准确的参考区间是疾病诊断和健康评估的重要参考依据。传统的直接法因成本高、流程繁琐而应用受限;间接法基于真实世界数据,可低成本建立参考区间,更易于推广。在方法学上,间接法已从依赖人工判读的传统图形法(如Hoffman法、Bhattacharya法)演进为一系列稳健的统计模型(如KOSMIC法、refineR法),并进一步融入了机器学习算法(如混合密度网络、深度学习),实现了从混合数据中智能、自动地估计健康主体的参数分布。在应用层面,间接法凭借其处理海量数据的能力,成功推动了参考区间从通用向精准分层的转变,能够有效揭示并量化年龄、性别和地域等因素对生理指标的特定影响。前沿方法可超越固定分层,通过广义加性模型、形状模型和分位数回归等技术构建随年龄连续变化的动态参考曲线,并结合个体内生物学变异和个体纵向数据建立个性化参考区间。尽管面临数据质量、模型选择和临床验证等挑战,间接法与大数据的结合仍驱动着检验医学向更精准、更个性化快速发展。

关键词: 参考区间, 间接法, 大数据

Abstract:

Accurate reference intervals are crucial for disease diagnosis and health assessment in clinical laboratories. The traditional direct method is limited by its high cost and complex procedures,and indirect method leverages real-world data to establish reference intervals cost-effectively,offering greater potential for widespread adoption. Methodologically,the field has progressed from traditional graphical techniques reliant on manual interpretation (Hoffman and Bhattacharya) to robust statistical models (KOSMIC and refineR),and further to the integration of machine learning algorithms (mixture density networks and deep learning),enabling intelligent and automated estimation of the healthy population parameter distribution from mixed datasets. In application,the capacity of indirect methods to process vast datasets has successfully catalyzed a shift from generic reference interval towards precise stratification,effectively revealing and quantifying the specific influences of factors like age,sex and geography on physiological markers. Latest methods now transcend fixed partitions,utilizing techniques such as generalized additive models for location,scale and shape and quantile regression to construct dynamic reference curves that vary continuously with age. Furthermore,they facilitate the development of personalized reference interval by incorporating within-subject biological variation and longitudinal data. Despite persistent challenges related to data quality,model selection and clinical validation,the synergy between indirect methods and big data is unequivocally propelling laboratory medicine toward a more precise and personalized development.

Key words: Reference interval, Indirect method, Big datum

中图分类号: