Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (3): 291-297.DOI: 10.3969/j.issn.1673-8640.2024.03.015
Previous Articles Next Articles
SHEN Jinjin, XUE Han, LI Jinfu, GAO Lifei, ZHENG Yehuan()
Received:
2022-10-26
Revised:
2023-05-10
Online:
2024-03-30
Published:
2024-04-24
CLC Number:
SHEN Jinjin, XUE Han, LI Jinfu, GAO Lifei, ZHENG Yehuan. Research progress on the factors of CYP2D6 genotyping[J]. Laboratory Medicine, 2024, 39(3): 291-297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.03.015
等位基因 | 活性评分/分 | 东亚人群频率/% | 等位基因功能 | 基因突变 |
---|---|---|---|---|
*1 | 1.0 | 25.78 | 正常 | |
*1×2 | 2.0 | 0.34 | 提高 | *1双拷贝基因 |
*2 | 1.0 | 11.92 | 正常 | 2851C>T,4181G>C |
*2×2 | 2.0 | 0.46 | 提高 | *2双拷贝基因 |
*2×≥3 | ≥3.0 | 0.10 | 提高 | *2至少有三拷贝基因 |
*4 | 0.0 | 0.53 | 无 | 1847G>A |
*5 | 0.0 | 4.82 | 无 | CYP2D6整基因缺失 |
*9 | 0.25 | 0.17 | 减弱 | 2616delAAG |
*10 | 0.25 | 42.84 | 减弱 | 100C>T,4181G>C |
*10×2 | 0.5 | 0.59 | 减弱 | *10双拷贝基因 |
*13 | 0.0 | 0.13 | 无 | CYP2D7-CYP2D6 hybrid gene |
*14 | 0.5 | 0.47 | 减弱 | 1759G>A,2851C>T,4181G>C |
*18 | 0.0 | 0.13 | 无 | 4135-4136insTGCCCACTG |
*21 | 0.0 | 0.35 | 无 | 2580-2581insC,2851C>T,4181G>C |
*34 | 1.0 | 0.89 | 正常 | 2851C>T |
*36 | 0.0 | 1.14 | 无 | 100C>T, 4129C>G,4132A>G,4156C>T+4157A>C,4159G>C,4165T>G,4168G>A+4169C>G,4181G>C |
*36×2 | 0.0 | 0.41 | 无 | *36双拷贝基因 |
*39 | 1.0 | 0.56 | 正常 | 4181G>C |
*41 | 0.25 | 2.32 | 减弱 | 2851C>T,2989G>A,4181G>C |
*49 | 0.5 | 0.99 | 减弱 | 100C>T,1612T>A,4181G>C |
*52 | 0.25 | 0.16 | 减弱 | 100C>T,3878G>A,4181G>C |
*60 | 0.0 | 0.14 | 无 | 1888-1889insTA |
*65 | 2.95 | 功能不清 | 100C>T,2851C>T,4181G>C | |
*69 | 0.0 | 1.00 | 无 | 100C>T,2851C>T,2989G>A,4181G>C |
等位基因 | 活性评分/分 | 东亚人群频率/% | 等位基因功能 | 基因突变 |
---|---|---|---|---|
*1 | 1.0 | 25.78 | 正常 | |
*1×2 | 2.0 | 0.34 | 提高 | *1双拷贝基因 |
*2 | 1.0 | 11.92 | 正常 | 2851C>T,4181G>C |
*2×2 | 2.0 | 0.46 | 提高 | *2双拷贝基因 |
*2×≥3 | ≥3.0 | 0.10 | 提高 | *2至少有三拷贝基因 |
*4 | 0.0 | 0.53 | 无 | 1847G>A |
*5 | 0.0 | 4.82 | 无 | CYP2D6整基因缺失 |
*9 | 0.25 | 0.17 | 减弱 | 2616delAAG |
*10 | 0.25 | 42.84 | 减弱 | 100C>T,4181G>C |
*10×2 | 0.5 | 0.59 | 减弱 | *10双拷贝基因 |
*13 | 0.0 | 0.13 | 无 | CYP2D7-CYP2D6 hybrid gene |
*14 | 0.5 | 0.47 | 减弱 | 1759G>A,2851C>T,4181G>C |
*18 | 0.0 | 0.13 | 无 | 4135-4136insTGCCCACTG |
*21 | 0.0 | 0.35 | 无 | 2580-2581insC,2851C>T,4181G>C |
*34 | 1.0 | 0.89 | 正常 | 2851C>T |
*36 | 0.0 | 1.14 | 无 | 100C>T, 4129C>G,4132A>G,4156C>T+4157A>C,4159G>C,4165T>G,4168G>A+4169C>G,4181G>C |
*36×2 | 0.0 | 0.41 | 无 | *36双拷贝基因 |
*39 | 1.0 | 0.56 | 正常 | 4181G>C |
*41 | 0.25 | 2.32 | 减弱 | 2851C>T,2989G>A,4181G>C |
*49 | 0.5 | 0.99 | 减弱 | 100C>T,1612T>A,4181G>C |
*52 | 0.25 | 0.16 | 减弱 | 100C>T,3878G>A,4181G>C |
*60 | 0.0 | 0.14 | 无 | 1888-1889insTA |
*65 | 2.95 | 功能不清 | 100C>T,2851C>T,4181G>C | |
*69 | 0.0 | 1.00 | 无 | 100C>T,2851C>T,2989G>A,4181G>C |
[1] | NOFZIGER C, TURNER A J, SANGKUHL K, et al. PharmVar GeneFocus:CYP2D6[J]. Clinical Pharmacology & Therapeutics, 2020, 107(1):154-170. |
[2] | 杨帆, 仝利俊, 马睿婷. CYP2D6基因多态性对个体用药影响的研究进展[J]. 世界最新医学信息文摘(连续型电子期刊), 2018, 18(92):32-34. |
[3] |
ZANGER U M, SCHWAB M. Cytochrome P 450 enzymes in drug metabolism:regulation of gene expression,enzyme activities,and impact of genetic variation[J]. Pharmacol Ther, 2013, 138(1):103-141.
DOI URL |
[4] |
SUNTHANKAR S D, KANNANKERIL P J, GAEDIGK A, et al. Influence of CYP2D6 genetic variation on adverse events with propafenone in the pediatric and young adult population[J]. Clin Transl Sci, 2022, 15(7):1787-1795.
DOI URL |
[5] | TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes(Basel), 2020, 11(11):1295. |
[6] |
MAHGOUB A, IDLE J R, DRING L G, et al. Polymorphic hydroxylation of debrisoquine in man[J]. Lancet, 1977, 2(8038):584-586.
PMID |
[7] |
EICHELBAUM M, SPANNBRUCKER N, STEINCKE B, et al. Defective N-oxidation of sparteine in man:a new pharmacogenetic defect[J]. Eur J Clin Pharmacol, 1979, 16(3):183-187.
DOI URL |
[8] | LARSEN J B, JØRGENSEN S J P. Simple and robust detection of CYP2D6 gene deletions and duplications using CYP2D8P as reference[J]. Pharmaceuticals(Basel), 2022, 15(2):166. |
[9] |
DALLE FRATTE C, GAGNO S, RONCATO R, et al. CYP2D6 and CYP2C8 pharmacogenetics and pharmacological interactions to predict imatinib plasmatic exposure in GIST patients[J]. Br J Clin Pharmacol, 2023, 89(3):1089-1098.
DOI URL |
[10] |
GAEDIGK A. Complexities of CYP2D6 gene analysis and interpretation[J]. Int Rev Psychiatry, 2013, 25(5):534-553.
DOI URL |
[11] |
ABDULJALIL K, FRANK D, GAEDIGK A, et al. Assessment of activity levels for CYP2D6*1,CYP2D6*2,and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan[J]. Clin Pharmacol Ther, 2010, 88(5):643-651.
DOI URL |
[12] |
DINH J C, BOONE E C, STAGGS V S, et al. The impact of the CYP2D6 "enhancer" single nucleotide polymorphism on CYP2D6 activity[J]. Clin Pharmacol Ther, 2022, 111(3):646-654.
DOI URL |
[13] |
TURNER A J, AGGARWAL P, BOONE E C, et al. Identification of CYP2D6 haplotypes that interfere with commonly used assays for copy number variation characterization[J]. J Mol Diagn, 2021, 23(5):577-588.
DOI PMID |
[14] |
NAHID N A, JOHNSON J A. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine[J]. Expert Opin Drug Metab Toxicol, 2022, 18(11):769-785.
DOI URL |
[15] |
WANG Z, LI Q Q, HUANG C K, et al. Determination of CYP450 activities in diabetes mellitus rats by a UHPLC-MS/MS method[J]. J Pharm Biomed Anal, 2023, 224:115191.
DOI URL |
[16] | CHAROENCHOKTHAVEE W, PANOMVANA D, SRIURANPONG V, et al. Prevalence of CYP2D6*2,CYP2D6*4,CYP2D6*10,and CYP3A5*3 in Thai breast cancer patients undergoing tamoxifen treatment[J]. Breast Cancer(Dove Med Press), 2016, 8:149-155. |
[17] |
RAY B, OZCAGLI E, SADEE W, et al. CYP2D6 haplotypes with enhancer SNP rs5758550 and rs16947(*2 allele):implications for CYP2D6 genotyping panels[J]. Pharmacogenet Genomics, 2019, 29(2):39.
DOI URL |
[18] |
ZHOU S F. Polymorphism of human cytochrome P450 2D6 and its clinical significance:part Ⅰ[J]. Clin Pharmacokinet, 2009, 48(11):689-723.
DOI URL |
[19] |
BROUWER J M J L, NIJENHUIS M, SOREE B, et al. Dutch Pharmacogenetics Working Group(DPWG)guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs[J]. Eur J Hum Genet, 2022, 30(10):1114-1120.
DOI |
[20] |
CAUDLE K E, SANGKUHL K, WHIRL-CARRILLO M, et al. Standardizing CYP2D6 genotype to phenotype translation:consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch pharmacogenetics working group[J]. Clin Transl Sci, 2020, 13(1):116-124.
DOI URL |
[21] | 张雄, 姜蕊琪, 刘鹏, 等. 呼伦贝尔地区不同民族CYP2D6和CYP2C19及CYP1A2基因多态性分析[J]. 内蒙古医学杂志, 2020, 52(1):4-8. |
[22] |
ZHANG X, LIU C, ZHOU S, et al. Influence of CYP2D6 gene polymorphisms on the pharmacokinetics of aripiprazole in healthy Chinese subjects[J]. Pharmacogenomics, 2021, 22(4):213-223.
DOI URL |
[23] |
CHEN J, ZHENG J, ZHU Z, et al. Impact of the CYP2D6 genotype on metoprolol tolerance and adverse events in elderly Chinese patients with cardiovascular diseases[J]. Front Pharmacol, 2022, 13:876392.
DOI URL |
[24] |
SORIA-CHACARTEGUI P, ZUBIAUR P, OCHOA D, et al. Genetic variation in CYP2D6 and SLC22A1 affects amlodipine pharmacokinetics and safety[J]. Pharmaceutics, 2023, 15(2):404.
DOI URL |
[25] |
STOJANOVI MARKOVI A, ZAJC PETRANOVI M, ŠKARI-JURI T, et al. Relevance of CYP2D6 gene variants in population genetic differentiation[J]. Pharmaceutics, 2022, 14(11):2481.
DOI URL |
[26] |
ELSAID A M, ZAHRAN R F, ELMETWALY S M, et al. The potential impact of CYP2D6(*2/*4/*10)gene variants among Egyptian epileptic children:a preliminary study[J]. Gene, 2022, 832:146585.
DOI URL |
[27] |
FREDERIKSEN T, AREBERG J, RAOUFINIA A, et al. Estimating the in vivo function of CYP2D6 alleles through population pharmacokinetic modeling of brexpiprazole[J]. Clin Pharmacol Ther, 2023, 113(2):360-369.
DOI URL |
[28] | PharmGKB biogeographical groups. CYP2D6 frequency table[EB/OL]. (2023-05-10)[2022-10-26]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ffiles.cpicpgx.org%2Fdata%2Freport%2Fcurrent%2Ffrequency%2FCYP2D6_frequency_table.xlsx&wdOrigin=BROWSELINK. |
[29] |
LEE C M, KANG P, CHO C K, et al. Physiologically based pharmacokinetic modelling to predict the pharmacokinetics of metoprolol in different CYP2D6 genotypes[J]. Arch Pharm Res, 2022, 45(6):433-445.
DOI |
[30] |
ZANGER U M, MOMOI K, HOFMANN U, et al. Tri-allelic haplotypes determine and differentiate functionally normal allele CYP2D6*2 and impaired allele CYP2D6*41[J]. Clin Pharmacol Ther, 2021, 109(5):1256-1264.
DOI URL |
[31] |
PUAPRASERT K, CHU C, SARALAMBA N, et al. Real time PCR detection of common CYP2D6 genetic variants and its application in a Karen population study[J]. Malar J, 2018, 17(1):427.
DOI |
[32] |
CHEN X, SHEN F, GONZALUDO N, et al. Cyrius:accurate CYP2D6 genotyping using whole-genome sequencing data[J]. Pharmacogenomics J, 2021, 21(2):251-261.
DOI |
[33] |
CHAN E R, MEHLOTRA R K, PIRANI K A, et al. CYP2D6 gene resequencing in the Malagasy,a population at the crossroads between Asia and Africa:a pilot study[J]. Pharmacogenomics, 2022, 23(5):315-325.
DOI URL |
[34] |
STOJANOVI MARKOVI A, ZAJC PETRANOVI M, TOMAS Ž, et al. Untangling SNP variations within CYP2D6 gene in Croatian Roma[J]. J Pers Med, 2022, 12(3):374.
DOI URL |
[35] |
周逸雯, 周琰, 吴炯, 等. CYP3A4、CYP3A5和CYP2D6基因单核苷酸多态性对肾移植术后稳定期患者他克莫司代谢的影响[J]. 检验医学, 2015, 30(11):1091-1095.
DOI |
[36] |
RANADEVA N D K, SIRISENA N D, WETTHASINGHE T K, et al. Design and implementation of a novel pharmacogenetic assay for the identification of the CYP2D6*10 genetic variant[J]. BMC Res Notes, 2022, 15(1):104.
DOI PMID |
[37] | 翟晓艳, 崔炜, 张亚楠, 等. 国人CYP2D6*10基因多态性研究[J]. 河北医科大学学报, 2010, 31(2):128-131. |
[38] |
KANJI C R, NYABADZA G, NHACHI C, et al. Pharmacokinetics of tamoxifen and its major metabolites and the effect of the African ancestry specific CYP2D6*17 variant on the formation of the active metabolite,endoxifen[J]. J Pers Med, 2023, 13(2):272.
DOI URL |
[39] | 柴琳, 刘红, 许莉, 等. 大片段PCR方法检测CYP2D6*5基因分型的选择与优化[J]. 实用药物与临床, 2017, 20(3):307-311. |
[40] |
ZHANG W Y, TU Y B, HAINING R L, et al. Expression and functional analysis of CYP2D6*24,CYP2D6*26,CYP2D6*27,and CYP2D7 isozymes[J]. Drug Metab Dispos, 2009, 37(1):1-4.
DOI URL |
[41] | HINRICHS J W, SMALLEGOOR W D, VAN BAALEN-BENEDEK E H, et al. Detection of CYP2D6 polymorphisms*9,*10,and*41 using ARMS-PCR and their allelic frequencies in 400 psychiatric patients[J]. Clin Chem Lab Med, 2007, 45(4):555-557. |
[42] | 吴建元, 章柏钰, 蔡君龙, 等. CYP2D6*10基因多态性检测体系的建立与评价[J]. 国际检验医学杂志, 2022, 43(14):1713-1720. |
[43] | GAEDIGK A, JAIME L K, BERTINO J S Jr, et al. Identification of novel CYP2D7-2D6 hybrids:non-functional and functional variants[J]. Front Pharmacol, 2010, 1:121. |
[44] |
BLACK J L 3rd, WALKER D L, O'KANE D J, et al. Frequency of undetected CYP2D6 hybrid genes in clinical samples:impact on phenotype prediction[J]. Drug Metab Dispos, 2012, 40(1):111-119.
DOI URL |
[45] |
GAEDIGK A, FUHR U, JOHNSON C, et al. CYP2D7-2D6 hybrid tandems:identification of novel CYP2D6 duplication arrangements and implications for phenotype prediction[J]. Pharmacogenomics, 2010, 11(1):43-53.
DOI URL |
[46] | 刘金辉, 方亚妮. 西安汉族人群CYP2D6基因拷贝数变异与串联重组多态性研究[J]. 中国实验诊断学, 2022, 26(12):1739-1743. |
[47] |
SCHAEFFELER E, SCHWAB M, EICHELBAUM M, et al. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-rime PCR[J]. Hum Mutat, 2003, 22(6):476-485.
DOI URL |
[48] |
JUKIC M M, LAUSCHKE V M, SAITO T, et al. Functional characterization of CYP2D7 gene variants[J]. Pharmacogenomics, 2018, 19(12):931-936.
DOI URL |
[49] | RIFFEL A K, DEHGHANI M, HARTSHORNE T, et al. CYP2D7 sequence variation interferes with TaqMan CYP2D6(*)15 and(*)35 genotyping[J]. Front Pharmacol, 2016, 6:312. |
[50] |
CHARNAUD S, MUNRO J E, SEMENEC L, et al. PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus[J]. Commun Biol, 2022, 5(1):168.
DOI PMID |
[51] |
FUKUNAGA K, HISHINUMA E, HIRATSUKA M, et al. Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population[J]. J Hum Genet, 2021, 66(2):139-149.
DOI |
[52] | HUANG H, DONG Y, XU Y, et al. The association of CYP2D6 gene polymorphisms in the full-length coding region with higher recurrence rate of vivax malaria in Yunnan Province,China[J]. Malar J, 2021, 201(1):160. |
[53] |
WEN Y F, GAEDIGK A, BOONE E C, et al. The identification of novel CYP2D6 variants in US Hmong:results from genome sequencing and clinical genotyping[J]. Front Pharmacol, 2022, 13:867331.
DOI URL |
[1] | JIN Chunlei, HU Hui, LIU Jiao, YANG Mufeng, SHAN Qunda, CHEN Penglong. Application role of single nucleotide polymorphism microarray analysis in pregnant women with different prenatal diagnostic indications [J]. Laboratory Medicine, 2024, 39(9): 841-846. |
[2] | LIU Yadong, YANG Lei, SONG Shaoting, DU Xiong, LIU Qiang, SUN Jianrong. Correlation between Lp-PLA2 gene polymorphism and histopathological staining of carotid plaque [J]. Laboratory Medicine, 2024, 39(7): 621-626. |
[3] | ZHAO Qian, ZENG Limin, ZHOU Liping, QI Lin. Relationship between CYP2C19 polymorphism and miR-374b-5p with neurological impairment and short-term prognosis in patients with acute cerebral infarction [J]. Laboratory Medicine, 2024, 39(6): 536-541. |
[4] | ZHAO Ying, LU Loukaiyi, DAI Sijia, CHEN Yisheng. Correlation between MTHFR C677T polymorphism and insulin resistance in patients with polycystic ovary syndrome [J]. Laboratory Medicine, 2024, 39(6): 562-567. |
[5] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[6] | HUANG Lei, TANG Wenjia, ZHOU Yan, ZHOU Jiaye, ZHANG Chunyan, YANG Jing, WANG Beili, PAN Baishen, GUO wei. Prognosis of RDW-SD and RDW-CV in breast cancer patients with lymphatic metastasis [J]. Laboratory Medicine, 2024, 39(4): 376-381. |
[7] | WANG Zhengquan, WU Zhengmu, LI Wen. Long-term biological variation of serum sex hormones during female follicular phase in Shanghai [J]. Laboratory Medicine, 2024, 39(3): 282-288. |
[8] | JING Mengxia, YU Yongguo. Clinical application of different molecular detection techniques in children's rare genetic diseases [J]. Laboratory Medicine, 2024, 39(2): 103-106. |
[9] | LU Chao, HAN Huijuan, DI Hua, MU Yanchao. Pedigree analysis of dilated cardiomyopathy type 1S caused by MYH7 c.1574AG variation [J]. Laboratory Medicine, 2024, 39(2): 138-142. |
[10] | YANG Weiwei, YAO Liying, REN Chenchun, WANG Wenjing, ZHANG Haixia, LI Wen, LI Bo. Prenatal diagnosis result analysis of 884 fetuses with sex chromosomal abnormalities [J]. Laboratory Medicine, 2024, 39(2): 149-154. |
[11] | WANG Wei, ZHANG Zhixin, ZHANG Chuanbao, ZHOU Weiyan, WANG Zhiguo. Establishment of allowable total error,allowable imprecision and allowable bias for 22 endocrine analytes [J]. Laboratory Medicine, 2023, 38(8): 707-712. |
[12] | FENG Xuan, ZHANG Qinghua, WANG Xing, HE Jing, LIANG Jici, JIA Chunyang, LIN Pengwu, ZHU Shaohua, HAO Shengju. Evaluation of clinical application of expanded non-invasive prenatal testing for chromosome copy number variation [J]. Laboratory Medicine, 2023, 38(8): 730-737. |
[13] | PENG Shouning, DENG Weicong, FU Yanbo, WU Yanni. Relationship between KCNH2 and CACNA1C gene polymorphisms and cognitive function in patients with schizophrenia [J]. Laboratory Medicine, 2023, 38(8): 742-747. |
[14] | ZHANG Xuming, YIN Weiming, GAO Jing. Correlation of UGT1A1 gene polymorphism with pregnancy complications and adverse pregnancy outcomes among gestational hypothyroidism patients in Shenzhen Bao'an area [J]. Laboratory Medicine, 2023, 38(7): 665-668. |
[15] | HAN Xue, WEN Liu, WAN Yang. Analysis of amniotic fluid chromosome karyotype and genome copy number variation in critical or high-risk pregnant women by Down's screening [J]. Laboratory Medicine, 2023, 38(6): 548-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||