Laboratory Medicine ›› 2022, Vol. 37 ›› Issue (1): 91-96.DOI: 10.3969/j.issn.1673-8640.2022.01.019
Previous Articles Next Articles
SHEN Suya1, HUANG Jianzhao1(), LI Xiaohuai2
Received:
2020-08-09
Revised:
2021-05-12
Online:
2022-01-30
Published:
2022-03-07
Contact:
HUANG Jianzhao
CLC Number:
SHEN Suya, HUANG Jianzhao, LI Xiaohuai. Progress on the enrichment technology of circulating tumor cells[J]. Laboratory Medicine, 2022, 37(1): 91-96.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2022.01.019
特性 | 原理 | 应用方法 | 优点 | 缺点 |
---|---|---|---|---|
物理特性 | 大小差异 | 膜滤过法、密度梯度离心法 | 设计和操作简单、不受表面标志物影响 | 纯度低、敏感性低、实用性有限 |
流体力学 | DLD技术、惯性聚焦技术、涡流捕获技术 | 通量高、纯度高、无需生物学标志、不易阻塞 | 准确率低 | |
超声波 | 声波细胞分选 | 温和、无需配体、生物兼容 | 通量低 | |
细胞电学特征 | 电泳富集法 | 调控简单、可重复性强、纯度高、存活率高 | 富集效率偏低 | |
化学特性 | 抗体 | 免疫磁珠法、固载抗体微通道 | 特异性高、选择性强、敏感性高 | 重复性差、保存期短、成本高、过程复杂 |
适配体 | 适配体捕获法 | 亲和力高、可重复性强、保质期长、条件温和 | 成本高 |
特性 | 原理 | 应用方法 | 优点 | 缺点 |
---|---|---|---|---|
物理特性 | 大小差异 | 膜滤过法、密度梯度离心法 | 设计和操作简单、不受表面标志物影响 | 纯度低、敏感性低、实用性有限 |
流体力学 | DLD技术、惯性聚焦技术、涡流捕获技术 | 通量高、纯度高、无需生物学标志、不易阻塞 | 准确率低 | |
超声波 | 声波细胞分选 | 温和、无需配体、生物兼容 | 通量低 | |
细胞电学特征 | 电泳富集法 | 调控简单、可重复性强、纯度高、存活率高 | 富集效率偏低 | |
化学特性 | 抗体 | 免疫磁珠法、固载抗体微通道 | 特异性高、选择性强、敏感性高 | 重复性差、保存期短、成本高、过程复杂 |
适配体 | 适配体捕获法 | 亲和力高、可重复性强、保质期长、条件温和 | 成本高 |
特性 | 实验技术 | 原理 | 研究结果 | 文献 |
---|---|---|---|---|
物理性质 | 三角形微柱DLD阵列芯片 | 尺寸和变形性 | 细胞发生变形;流速为2 000 μL/min,捕获率为95%。 | LUI等[ |
直管道微流控芯片 | 力学性质 | 流速100~300 μL/min,肿瘤细胞活性高(89%~91%),可用于后续检测 | PARK等[ | |
放置声波传感器 | 声波分选 | 临床分离效果好;分选速度达7.5 mL/h,捕获率>86% | DING等[ | |
Cluster-Chip | 物理捕获CTC-cluster | 实现CTC-cluster的高效物理捕获,保持了细胞簇的完整性 | SARIOGLU等[ | |
化学特性 | 鱼骨形微流控分选平台 | 阳性分选法 | 捕获效率高、CTC可以在原位进行基因分析,可实现单细胞分离 | BRINKMANN等[ |
CTC-iChip芯片 | 阴性分选法 | 敏感度高,能进一步分析细胞的性质 | OZKUMUR等[ |
特性 | 实验技术 | 原理 | 研究结果 | 文献 |
---|---|---|---|---|
物理性质 | 三角形微柱DLD阵列芯片 | 尺寸和变形性 | 细胞发生变形;流速为2 000 μL/min,捕获率为95%。 | LUI等[ |
直管道微流控芯片 | 力学性质 | 流速100~300 μL/min,肿瘤细胞活性高(89%~91%),可用于后续检测 | PARK等[ | |
放置声波传感器 | 声波分选 | 临床分离效果好;分选速度达7.5 mL/h,捕获率>86% | DING等[ | |
Cluster-Chip | 物理捕获CTC-cluster | 实现CTC-cluster的高效物理捕获,保持了细胞簇的完整性 | SARIOGLU等[ | |
化学特性 | 鱼骨形微流控分选平台 | 阳性分选法 | 捕获效率高、CTC可以在原位进行基因分析,可实现单细胞分离 | BRINKMANN等[ |
CTC-iChip芯片 | 阴性分选法 | 敏感度高,能进一步分析细胞的性质 | OZKUMUR等[ |
[1] | 丁善航, 修典荣. 胰腺癌循环肿瘤细胞的富集、鉴定方法及预后的评估价值[J]. 中国微创外科杂志, 2019, 19(7):617-621. |
[2] |
XU X, JIANG Z, WANG J, et al. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis[J]. Electrophoresis, 2020, 41(10-11):933-951.
DOI URL |
[3] | BOYA M, CHU C H, LIU R, et al. Circulating tumor cell enrichment technologies[J]. Recent Results Cancer Res, 2020, 215:25-55. |
[4] |
DE T, GOYAL S, BALACHANDER G, et al. A novel ex vivo system using 3D polymer scaffold to culture circulating tumor cells from breast cancer patients exhibits dynamic E-M phenotypes[J]. J Clin Med, 2019, 8(9):1473.
DOI URL |
[5] |
KAMAL M, SAREMI S, KLOTZ R, et al. PIC&RUN:an integrated assay for the detection and retrieval of single viable circulating tumor cells[J]. Sci Rep, 2019, 9(1):17470.
DOI URL |
[6] | CHINEN L T, DE CARVALHO F M, ROCHA B M, et al. Cytokeratin-based CTC counting unrelated to clinical follow up[J]. J Thorac Dis, 2013, 5(5):593-599. |
[7] |
FREIDIN M B, TAY A, FREYDINA D V, et al. An assessment of diagnostic performance of a filter-based antibody-independent peripheral blood circulating tumour cell capture paired with cytomorphologic criteria for the diagnosis of cancer[J]. Lung Cancer, 2014, 85(2):182-185.
DOI URL |
[8] | 王晓昱, 徐兴祥. 循环肿瘤细胞富集分离和检测技术的研究进展[J]. 国际呼吸杂志, 2018, 38(4):301-305. |
[9] |
YEE-DE LÉON J F, SOTO-GARCÍA B, ARÁIZ-HERNÁNDEZ D, et al. Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples[J]. Sci Rep, 2020, 10(1):7543.
DOI URL |
[10] |
AGHILINEJAD A, AGHAAMOO M, CHEN X. On the transport of particles/cells in high-throughput deterministic lateral displacement devices:implications for circulating tumor cell separation[J]. Biomicrofluidics, 2019, 13(3):034112.
DOI URL |
[11] |
SONG Y, SHI Y, HUANG M, et al. Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells[J]. Angew Chem Int Ed Engl, 2019, 58(8):2236-2240.
DOI URL |
[12] |
WUNSCH B H, SMITH J T, GIFFORD S M, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm[J]. Nat Nanotechnol, 2016, 11(11):936-940.
DOI URL |
[13] |
LEE M G, CHOI S, PARK J K. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel[J]. Biomed Microdevices, 2010, 12(6):1019-1026.
DOI URL |
[14] |
WARKIANI M E, KHOO B L, WU L, et al. Ultra-fast,label-free isolation of circulating tumor cells from blood using spiral microfluidics[J]. Nat Protoc, 2016, 11(1):134-148.
DOI URL |
[15] | RENIER C, PAO E, CHE J, et al. Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology[J]. NPJ Precis Oncol, 2017, 1(1):15. |
[16] |
ANTFOLK M, ANTFOLK C, LILJA H, et al. A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells[J]. Lab Chip, 2015, 15(9):2102-2109.
DOI URL |
[17] |
LI P, MAO Z, PENG Z, et al. Acoustic separation of circulating tumor cells[J]. Proc Natl Acad Sci U S A, 2015, 112(16):4970-4975.
DOI URL |
[18] |
CHENG I F, HUANG W L, CHEN T Y, et al. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis[J]. Lab Chip, 2015, 15(14):2950-2959.
DOI PMID |
[19] |
SALIBA A E, SAIAS L, PSYCHARI E, et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays[J]. Proc Natl Acad Sci U S A, 2010, 107(33):14524-14529.
DOI URL |
[20] | 张磊, 黄慧玲, 杨昂, 等. 免疫磁珠法阴性富集循环肿瘤细胞方法的建立[J]. 检验医学, 2018, 33(8):770-771. |
[21] | LI G, WANG Y, TAN G. The construction of EpCAM/vimentin-PLGA/lipid immunomagnetic microspheres and the isolation of circulating tumor cells from lung cancer[J]. Int J Clin Exp Pathol, 2018, 11(12):5561-5570. |
[22] |
KUAI J H, WANG Q, ZHANG A J, et al. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently[J]. World J Gastroenterol, 2018, 24(3):351-359.
DOI URL |
[23] |
CHEN W, LI H, SU W, et al. Microfluidic device for on-chip isolation and detection of circulating exosomes in blood of breast cancer patients[J]. Biomicrofluidics, 2019, 13(5):054113.
DOI URL |
[24] |
STOTT S L, HSU C H, TSUKROV D I, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip[J]. Proc Natl Acad Sci U S A, 2010, 107(43):18392-18397.
DOI URL |
[25] |
CHENG S B, XIE M, XU J Q, et al. High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional poly(dimethylsiloxane)scaffold[J]. Anal Chem, 2016, 88(13):6773-6780.
DOI URL |
[26] |
ZHAO L, TANG C, XU L, et al. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail[J]. Small, 2016, 12(8):1072-1081.
DOI URL |
[27] |
LABIB M, GREEN B, MOHAMADI R M, et al. Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations[J]. J Am Chem Soc, 2016, 138(8):2476-2479.
DOI URL |
[28] |
KARABACAK N M, SPUHLER P S, FACHIN F, et al. Microfluidic,marker-free isolation of circulating tumor cells from blood samples[J]. Nat Protoc, 2014, 9(3):694-710.
DOI URL |
[29] |
WANG X, SUN L, ZHANG H, et al. Microfluidic chip combined with magnetic-activated cell sorting technology for tumor antigen-independent sorting of circulating hepatocellular carcinoma cells[J]. Peer J, 2019, 7:e6681.
DOI URL |
[30] |
PARK J M, LEE J Y, LEE J G, et al. Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood[J]. Anal Chem, 2012, 84(17):7400-7407.
DOI URL |
[31] | JACK R M, GRAFTON M M, RODRIGUES D, et al. Ultra-specific isolation of circulating tumor cells enables rare-cell RNA profiling[J]. Adv Sci(Weinh), 2016, 3(9):1600063. |
[32] |
LIU Z, HUANG F, DU J, et al. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure[J]. Biomicrofluidics, 2013, 7(1):11801.
DOI URL |
[33] |
PARK J S, SONG S H, JUNG H I. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels[J]. Lab Chip, 2009, 9(7):939-948.
DOI URL |
[34] |
DING X, PENG Z, LIN S C, et al. Cell separation using tilted-angle standing surface acousticwaves[J]. Proc Natl Acad Sci U S A, 2014, 111(36):12992-12997.
DOI URL |
[35] | SARIOGLU A F, ACETO N, KOJIC N, et al. A microfluidic device for label-free,physical capture of circulating tumor cell clusters[J]. Nat Methods, 2015, 12(7):685-691. |
[36] |
BRINKMANN F, HIRTZ M, HALLER A, et al. A versatile microarray platform for capturing rare cells[J]. Sci Rep, 2015, 5:15342.
DOI URL |
[37] | OZKUMUR E, SHAH A M, CICILIANO J C, et al. Inertial focusing for tumor antigen-dependent and-independent sorting of rare circulating tumor cells[J]. Sci Transl Med, 2013, 5(179):179ra47. |
[1] | ZHOU Yunlan, SHEN Lisong. Clinical application and challenges of liquid biopsy biomarkers in non-small cell lung cancer [J]. Laboratory Medicine, 2023, 38(9): 807-811. |
[2] | GAO Feng. Clinical application of novel tumor biomarkers:prospects and challenges [J]. Laboratory Medicine, 2023, 38(4): 303-306. |
[3] | WU Jiong, HU Jiahua, SHI Meifang, LIU Tao, DAI Jie, LU Xinyi, ZOU Zheng. Research progress of biomarkers of prostate cancer [J]. Laboratory Medicine, 2023, 38(2): 190-195. |
[4] | LIU Xingqiang, NING Lifen, LI Lin, CHEN Zhongcheng. Correlation of lung cancer clinicopathological characteristics with FR+-CTC,ANXA2 and ProGRP [J]. Laboratory Medicine, 2022, 37(8): 735-740. |
[5] | YU Qi, SUN Yi, WANG Qiongli, CAI Yiting, LI Li. Application of morphological analysis of circulating tumor cells in clinical examination [J]. Laboratory Medicine, 2022, 37(3): 264-269. |
[6] | YANG Chaomei, FENG Jie, LANG Lei, YAN Guangtao. Clinical application value of CTC combined determination with CEA and CA125 in colorectal cancer [J]. Laboratory Medicine, 2021, 36(9): 901-905. |
[7] | XIAO Xiao, GAO Chunfang. Research and application progress of circulating tumor cells in primary liver cancer [J]. Laboratory Medicine, 2019, 34(7): 661-666. |
[8] | CAO Minlu, SHEN Minna, ZHOU Yan, WANG Beili, ZHANG Chunyan, PAN Baishen, GUO Wei. Performance comparison of the detection of circulating tumor cells in hepatocellular carcinoma patients by qRT-PCR platform and CellSearch system [J]. Laboratory Medicine, 2019, 34(10): 927-931. |
[9] | ZHANG Jian, FENG Xiaoyan, SUN Tingting, WANG Kai, ZHANG Xirui, GAO Jiefeng, LIANG Xiaofei, KANG Xiangdong, PENG Junjie, ZHANG Heqiu, MIAO Chaoliang, SHEN Hebai. Esablishment on isolation and identification kit for circulating tumor cells in breast cancer [J]. Laboratory Medicine, 2015, 30(10): 1011-1016. |
[10] | ZHAO Wenjie;ZHOU Hongxing;WANG Sujian;WU Jiankang;WANG Jiaping;ZHANG Ping. The clinical significance of Lunx mRNA detection in plasma and peripheral mononuclear cells in patients with lung cancer [J]. , 2012, 27(8): 631-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||