Laboratory Medicine ›› 2016, Vol. 31 ›› Issue (11): 997-1001.DOI: 10.3969/j.issn.1673-8640.2016.011.016
• Orginal Article • Previous Articles Next Articles
CHEN Shuying1, SHI Chaohui2, LIN Yong1
Received:2015-10-16
Online:2016-11-30
Published:2016-12-22
CLC Number:
CHEN Shuying, SHI Chaohui, LIN Yong. Research progress of the relationship between microRNA and platelet[J]. Laboratory Medicine, 2016, 31(11): 997-1001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2016.011.016
| 15种高表达的血小板miRNA(从高到低排序) | 差异性表达的miRNA |
|---|---|
| hsa-miR-223 | hsa-miR-190 |
| hsa-miR-26b | hsa-miR-584 |
| hsa-miR-26a | hsa-miR-320a |
| hsa-miR-23a | hsa-miR-144 |
| hsa-miR-126 | hsa-miR-320c |
| hsa-miR-21 | hsa-miR-320d |
| hsa-let-71 | hsa-miR-376a |
| hsa-miR-22 | hsa-miR-320b |
| hsa-miR-24 | hsa-miR-625 |
| hsa-miR-720 | hsa-miR-136 |
| hsa-miR-16 | hsa-miR-376c |
| hsa-miR-23b | hsa-miR-337-3p |
| hsa-miR-142-3p | hsa-miR-411 |
| hsa-miR-142-5p | hsa-miR-34b |
| hsa-miR-191 | hsa-miR-376a |
| 15种高表达的血小板miRNA(从高到低排序) | 差异性表达的miRNA |
|---|---|
| hsa-miR-223 | hsa-miR-190 |
| hsa-miR-26b | hsa-miR-584 |
| hsa-miR-26a | hsa-miR-320a |
| hsa-miR-23a | hsa-miR-144 |
| hsa-miR-126 | hsa-miR-320c |
| hsa-miR-21 | hsa-miR-320d |
| hsa-let-71 | hsa-miR-376a |
| hsa-miR-22 | hsa-miR-320b |
| hsa-miR-24 | hsa-miR-625 |
| hsa-miR-720 | hsa-miR-136 |
| hsa-miR-16 | hsa-miR-376c |
| hsa-miR-23b | hsa-miR-337-3p |
| hsa-miR-142-3p | hsa-miR-411 |
| hsa-miR-142-5p | hsa-miR-34b |
| hsa-miR-191 | hsa-miR-376a |
| miRNA | 靶点 | 在血小板生成中的作用 | 相关文献 |
|---|---|---|---|
| miR-155 | ETS-1,MEIS-1 | 通过抑制巨核细胞的生成来减少血小板数量 | [19][23][24] |
| miR-150 | C-MYB | 通过促进巨核细胞的生成来增加血小板数量 | [20][25][26] |
| miR-146a | TRAF6,IL-6,TNF-ɑ,IFN-β,IL-1β | 在巨核细胞核血小板生成过程中起调节作用 | [27][28][29] |
| miR-34a | MAPPK1 | 通过促进造血干细胞形成巨核细胞集落,从而促进巨核细胞核血小板的生成 | [21][22] |
| miR-28 | MPL | 通过抑制巨核细胞的生成来减少血小板数量 | [30] |
| miR-27a | RUNX1 | 联合Runxl促进巨核细胞生成,增加血小板数量 | [31] |
| miR-125b-2 | DICER1,ST18 | 对巨核细胞的分化和血小板的生成起调节作用 | [32] |
| miRNA | 靶点 | 在血小板生成中的作用 | 相关文献 |
|---|---|---|---|
| miR-155 | ETS-1,MEIS-1 | 通过抑制巨核细胞的生成来减少血小板数量 | [19][23][24] |
| miR-150 | C-MYB | 通过促进巨核细胞的生成来增加血小板数量 | [20][25][26] |
| miR-146a | TRAF6,IL-6,TNF-ɑ,IFN-β,IL-1β | 在巨核细胞核血小板生成过程中起调节作用 | [27][28][29] |
| miR-34a | MAPPK1 | 通过促进造血干细胞形成巨核细胞集落,从而促进巨核细胞核血小板的生成 | [21][22] |
| miR-28 | MPL | 通过抑制巨核细胞的生成来减少血小板数量 | [30] |
| miR-27a | RUNX1 | 联合Runxl促进巨核细胞生成,增加血小板数量 | [31] |
| miR-125b-2 | DICER1,ST18 | 对巨核细胞的分化和血小板的生成起调节作用 | [32] |
| 1 | WONG MC,ZHANG DE X,WANG HH.Rapid emergence of atherosclerosis in Asia:a systematic review of coronary atherosclerotic heart disease epidemiology and implications for prevention and control strategies[J]. Curr Opin Lipidol,2015,26(4):257-269. |
| 2 | DAI W,LI Y,LV YN,et al.The roles of a novel anti-inflammatory factor,milk fat globule-epidermal growth factor 8,in patients with coronary atherosclerotic heart disease[J]. Atherosclerosis,2014,233(2):661-665. |
| 3 | AVERT Trial Collaboration Group,BERNHARDT J,LANQHORNE P,et al. Efficacy and safety of very early mobilisation within 24 h of stroke onset(AVERT):a randomised controlled trial[J]. Lancet,2015,386(9988):46-55. |
| 4 | MÜLLER KA,KARATHANOS A,TAVLAKI E,et al. Combination of high on-treatment platelet aggregation and low deaggregation better predicts long-term cardiovascular events in PCI patients under dual antiplatelet therapy[J]. Platelets,2014,25(6):439-446. |
| 5 | SHI R,ZHOU X,JI WJ,et al.The emerging role of miR-223 in platelet reactivity:implications in antiplatelet therapy[J]. Biomed Res Int,2015,2015:981841. |
| 6 | NAQALLA S,SHAW C,KONG X,et al.Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity[J]. Blood,2011,117(19):5189-5197. |
| 7 | SCHIRLE NT,SHEU-GRUTTADAURIA J,MACRAE IJ.Structural basis for microRNA targeting[J]. Science,2014,346(6209):608-613. |
| 8 | CARRINGTON JC,AMBROS V.Role of microRNAs in plant and animal development[J]. Science,2003,301(5631):336-338. |
| 9 | 覃基政,蒋青. microRNA调控血小板生成及功能[J]. 医学分子生物学杂志,2012,9(2):136-139. |
| 10 | SCHMIEDEL JM,KLEMM SL,ZHENG Y,et al.Gene expression. MicroRNA control of protein expression noise[J]. Science,2015,348(6230):128-132. |
| 11 | SCHWERTZ H,KSTER S,KAHR WH,et al.Anucleate platelets generate progeny[J]. Blood,2010,115(18):3801-3809. |
| 12 | BROGREN H,KARLSSON L,ANDERSSON M,et al.Platelets synthesize large amounts of active plasminogen activator inhibitor1[J]. Blood,2004,104(13):3943-3948. |
| 13 | SCHWERTZ H,TOLLEY ND,FOULKS JM,et al.Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets[J]. J Exp Med,2006,203(11):2433-2440. |
| 14 | DENIS MM,TOLLEY ND,BUNTING M,et al.Escaping the nuclear confines:signal-dependent pre-mRNA splicing in anucleate platelets[J]. Cell,2005,122(3):379-391. |
| 15 | BRUCHOVA H,MERKEROVA M,PRCHAL JT.Aberrant expression of microRNA in polycythemia vera[J]. Haematologica,2008,93(7):1009-1016. |
| 16 | LANDRY P,PLANTE I,OUELLET DL,et al.Existence of a microRNA pathway in anucleate platelets[J]. Nat Struct Mol Biol,2009,16(9):961-966. |
| 17 | NAGALLA S,SHAW C,KONG X,et al.Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity[J]. Blood,2011,117(19):5189-5197. |
| 18 | GARZON R,PICHIORRI F,PALUMBO T,et al.MicroRNA fingerprints during human megakaryocytopoiesis[J]. Proc Natl Acad Sci U S A,2006,103(13):5078-5083. |
| 19 | GEORGANTAS RW 3rd,HILDRETH R,MORISOT S,et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control[J]. Proc Natl Acad Sci U S A,2007,104(8):2750-2755. |
| 20 | LU,GUO S,EBERT BL,et al.MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors[J]. Dev Cell,2008,14(6):843-853. |
| 21 | NAVARRO F,GUTMAN D,MEIRE E,et al.MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53[J]. Blood,2009,114(10):2181-2192. |
| 22 | ICHIMURA A,RUIKE Y,TERASAWA K,et al.MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase1 during megakaryocytic differentiation of K562 cells[J]. Mol Pharmacol,2010,77(6):1016-1024. |
| 23 | O'CONNELL RM,RAO DS,CHAUDHURI AA,et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder[J]. J Exp Med,2008,205(3):585-594. |
| 24 | ROMANIA P,LULLI V,PELOSI E,et al.MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors[J]. Br J Haematol,2008,143(4):570-580. |
| 25 | EMAMBOKUS N,VEGIOPOULOS A,HARMAN B,et al.Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb[J]. EMBO J,2003,22(17):4478-4488. |
| 26 | BARROGA CF,PHAM H,KAUSHANSKY K.Thrombopoietin regulates c-Myb expression by modulating microRNA 150 expression[J]. Exp Hematol,2008,36(12):1585-1592. |
| 27 | LABBAYE C,SPINELLO I,QUARANTA MT,et al.A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis[J]. Nat Cell Biol,2008,10(7):788-801. |
| 28 | STARCZYNOWSKI DT,KUCHENBAUER F,ARGIROPOULOS B,et al.Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J]. Nat Med,2010,16(1):49-58. |
| 29 | STARCZYNOWSKI DT,KUCHENBAUER F,WEGRZYN J,et al.MicroRNA-146a disrupts hematopoietic differentiation and survival[J]. Exp Hematol,2011,39(2):167-178. |
| 30 | GIRARDOT M,PECQUET C,BOUKOUR S,et al.MiR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets[J]. Blood,2010,116(3):437-445. |
| 31 | OSMAN A,FLKER K.Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes[J]. Platelets,2011,22(6):433-441. |
| 32 | DAHIYA N,SARACHANA T,VU L,et al.Platelet microRNAs:an overview[J]. Transfus Med Rev,2015,29(4):215-219. |
| 33 | SHI R,ZHOU X,JI WJ,et al.The emerging role of miR-223 in platelet reactivity:implications in antiplatelet therapy[J]. Biomed Res Int,2015,2015:981841. |
| 34 | BRUCHOVA H,MERKEROVA M,PRCHAL JT,et al.Aberrant expression of microRNA in polycythemia vera[J]. Haematologica,2008,93(7):1009-1016. |
| 35 | LUO M,LI R,DENG X,et al.Platelet-derived miR-103b as a novel biomarker for the early diagnosis of type 2 diabetes[J]. Acta Diabetol,2015,52(5):943-949. |
| [1] | DUAN Lili, JIANG Chang, ZHOU Dongmei. Role of PLR in ankylosing spondylitis patients with positive antinuclear antibody [J]. Laboratory Medicine, 2023, 38(7): 669-674. |
| [2] | GUO Jie, LI Haixia, LI Xiaoyun. Correlation of preoperative RPR in peripheral blood with the prognosis of endometrial carcinoma patients [J]. Laboratory Medicine, 2023, 38(7): 675-679. |
| [3] | LIU Can, LUO Lingli, FU Min. Clinical roles of NLR,PLR,MPR and immunoglobulin determination in ASO-positive HSPN children [J]. Laboratory Medicine, 2023, 38(6): 590-593. |
| [4] | CHEN Yi, WANG Jia, XU Zhiwei, ZHAI Yaping, XUAN Weixia. Effects of different anticoagulants on phagocytosis,activation and apoptosis of in vitro neutrophil function [J]. Laboratory Medicine, 2023, 38(5): 479-483. |
| [5] | XIANG Jin, LIU Aiping, HU Yao, WU Zhiyuan, CAO Guojun, GUAN Ming. ANA profiles in COVID-19 patients and influence of serum heat-inactivation on ANA determination [J]. Laboratory Medicine, 2023, 38(12): 1141-1146. |
| [6] | GU Yu, LIANG Xiaoyan, MA Shenghui, TONG Na, CHENG Mingyan, YAN Zejun. Expression and near-term prognostic predictive value of plasma biomarkers in chronic kidney disease patients with thromboembolism [J]. Laboratory Medicine, 2023, 38(12): 1177-1182. |
| [7] | LU Xinli, LIU Yong, LI Yan, WANG Yingying, AN Ning, LIU Meng. Identification of near full-length genome structures of new HIV-1 recombinant strains [J]. Laboratory Medicine, 2023, 38(11): 1015-1019. |
| [8] | DENG Chenxia, MEI Yanping, ZHANG Xia, HUANG Baoshan, TIAN Dan, CAO Mengting, HU Yongqi, LIN Yongping, TIAN Lijun. Depolymerization effect of optical platelet count on reversible platelet aggregation after blood collection [J]. Laboratory Medicine, 2023, 38(11): 1087-1090. |
| [9] | WEN Jing, SHI Rui, XIE Jia, LIU Feng, LI Guang, REN Jingjing, LEI Xiaoru, GUO Xiaobo, SONG Yanping. Clinical application of metagenomic next-generation sequencing for determining pathogens in febrile neutropenic patients [J]. Laboratory Medicine, 2022, 37(9): 855-859. |
| [10] | YU Fangfang, ZHAO Qi, YANG Liping, WANG Chenyu. Correlation of hematological indexes and expression of HER-2 in patients with breast cancer [J]. Laboratory Medicine, 2022, 37(6): 514-517. |
| [11] | ZHU Yunjie, MA Zhengyao, SHEN Minna, ZHOU Yan, HUANG Fei, CHEN Xinning, ZHANG Chunyan, WANG Beili, GUO Wei. Establishment and clinical application evaluation of plasma cfDNA determination in colorectal cancer patients [J]. Laboratory Medicine, 2022, 37(6): 561-567. |
| [12] | SONG Yunxiao, TONG Wei, ZHANG Haichen, ZHANG Yinwang, BIAN Xiaobo, ZHANG Linlin, YUAN Wenhua, ZHAO Zhiyun, GE Wen, YAO Tianyue. Correlation of systemic inflammatory markers and fracture occurrence in elderly patients with osteoporosis [J]. Laboratory Medicine, 2022, 37(3): 235-239. |
| [13] | HE Tianwen, LU Jian, CHEN Chuangqi, LIU Dun, DING Hongke, LIU Ling, DU Li, ZHENG Yichun, YIN Aihua. Preimplantation genetic testing of infantile polycystic kidney disease by next generation sequencing [J]. Laboratory Medicine, 2022, 37(3): 257-263. |
| [14] | XU Mingyuan, XU Guisen, YANG Xiaokun, LUO Yong, GUAN Sishu, FAN Yunfei. Correlation between the expression levels of MMP mRNA and ADAMTS mRNA with the degree of intervertebral disc degeneration [J]. Laboratory Medicine, 2022, 37(2): 117-121. |
| [15] | SUN Jiaqi, JIN Weifeng, LI Ping, CHEN Shuzi, LIN Ping, LI Dan, CHEN Qing, WANG Mengxia, ZHU Yuxin. Influence of heat inactivation of blood samples at 56 ℃ for 30 min on psychiatric drug concentration monitoring [J]. Laboratory Medicine, 2022, 37(12): 1174-1177. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||